Suppr超能文献

锂接枝的硅掺杂γ-石墨炔作为一种可逆储氢主体材料。

Lithium-grafted Si-doped γ-graphyne as a reversible hydrogen storage host material.

作者信息

Duhan Nidhi, Dhilip Kumar T J

机构信息

Quantum Dynamics Lab, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India.

出版信息

Phys Chem Chem Phys. 2024 Apr 3;26(14):11140-11149. doi: 10.1039/d3cp05294j.

Abstract

In recent years, hydrogen (H) has become the most sought-after sustainable energy carrier by virtue of its high energy content and carbon-free emission. The practical implementation of hydrogen as an alternative fuel calls for an efficient and secure storage medium. Within this framework, we have investigated Li-grafted Si-doped γ-graphyne for H storage applications by implementing the cutting-edge density functional theory (DFT). A dynamically and thermally stable Si-doped γ-graphyne (SiG) monolayer is functionalized with Li metal atoms that augmented the hydrogen binding strength of the nanolayer by almost three times, owing to the polarization effect of the Li atoms. The Li metal atoms get adsorbed over the monolayer, allowing a binding energy of -2.73 eV that is greater than the Li cohesive energy (-1.63 eV), which eliminates the metal-metal clustering probability. The reliability of the Li-functionalized SiG monolayer (LiSiG) at elevated temperature has been further substantiated by performing and analyzing ab initio molecular dynamics (AIMD) simulations at 400 K. It is noteworthy that a total of four H molecules are held up by each Li atom with an average adsorption energy of -0.32 eV and a maximum gravimetric capacity of 8.48 wt%, which remarkably follows the US-DOE parameters. Partial density of states and Hirshfeld charge analysis are utilized to recognize the interaction channel which reveals the Kubas and Niu-Rao-Jena-like bonding among the metal atoms and loaded hydrogen molecules. The hydrogen occupancy calculated at different temperatures and pressures indicates that hydrogen molecules can be reversibly stored over the LiSiG system, and it is noted that adsorbed H begins to desorb at 280 K, with complete desorption at 400 K and 20 atm (or lower). AIMD simulations are further performed to authenticate the H desorption at various temperatures, which agrees well with the occupation number analysis. All the outcomes advocate for efficient reversible hydrogen storage over the proposed host material.

摘要

近年来,氢气(H)凭借其高能量含量和无碳排放,已成为最受追捧的可持续能源载体。将氢气作为替代燃料实际应用,需要一种高效且安全的存储介质。在此框架下,我们通过运用前沿的密度泛函理论(DFT),研究了锂接枝硅掺杂的γ-石墨炔在储氢应用中的性能。一种动态和热稳定的硅掺杂γ-石墨炔(SiG)单层被锂金属原子官能化,由于锂原子的极化效应,纳米层的氢结合强度提高了近三倍。锂金属原子吸附在单层上,结合能为-2.73 eV,大于锂的内聚能(-1.63 eV),这消除了金属-金属聚集的可能性。通过在400 K下进行并分析从头算分子动力学(AIMD)模拟,进一步证实了锂官能化SiG单层(LiSiG)在高温下的可靠性。值得注意的是,每个锂原子总共能吸附四个氢分子,平均吸附能为-0.32 eV,最大重量容量为8.48 wt%,这显著符合美国能源部的参数。利用态密度和Hirshfeld电荷分析来识别相互作用通道,揭示了金属原子与负载氢分子之间类似库巴斯和牛-饶-耶拿的键合。在不同温度和压力下计算的氢占有率表明,氢分子可以在LiSiG系统上可逆存储,并且注意到吸附的氢在280 K开始解吸,在400 K和20 atm(或更低)时完全解吸。进一步进行AIMD模拟以验证不同温度下的氢解吸,这与占据数分析结果吻合良好。所有结果都表明所提出的主体材料具有高效可逆储氢性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验