Suppr超能文献

利用大生物数据工程未来的谷物作物:迈向智能设计驱动的育种。

Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design.

机构信息

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

出版信息

J Genet Genomics. 2024 Aug;51(8):781-789. doi: 10.1016/j.jgg.2024.03.005. Epub 2024 Mar 24.

Abstract

How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.

摘要

养活 100 亿人口是未来几十年需要解决的挑战之一,尤其是在气候变化不可预测的情况下。作物育种从当地农民基于表型的选择开始,发展到现在的基于生物技术的育种,在保障全球粮食供应方面发挥了关键作用。然而,面对不断变化的环境和不断增长的人口,我们能否足够快地培育出优秀的作物品种,实现高产量、高质量和广泛的适应性?本文概述了近年来在理解谷类作物育种方面的最新进展,包括对作物农艺性状的现有认识、新开发的技术、作物大生物学数据研究,以及通过设计实现智能驱动育种的整合的可能性,迎来了作物育种实践的新时代,塑造了未来作物的新架构。本文重点介绍了主要的谷类作物,包括水稻、玉米和小麦,以解释智能驱动设计育种如何成为现实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验