Aucone Emanuele, Geckeler Christian, Morra Daniele, Pallottino Lucia, Mintchev Stefano
Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland.
Nat Commun. 2024 Mar 26;15(1):2646. doi: 10.1038/s41467-024-46967-5.
Animals traverse vegetation by direct physical interaction using their entire body to push aside and slide along compliant obstacles. Current drones lack this interaction versatility that stems from synergies between body morphology and feedback control modulated by sensing. Taking inspiration from nature, we show that a task-oriented design allows a drone with a minimalistic controller to traverse obstacles with unknown elastic responses. A discoid sensorized shell allows to establish and sense contacts anywhere along the shell and facilitates sliding along obstacles. This simplifies the formalization of the control strategy, which does not require a model of the interaction with the environment, nor high-level switching conditions for alternating between pushing and sliding. We utilize an optimization-based controller that ensures safety constraints on the robot's state and dampens the oscillations of the environment during interaction, even if the elastic response is unknown and variable. Experimental evaluation, using a hinged surface with three different stiffness values ranging from 18 to 155.5 N mm rad, validates the proposed embodied aerial physical interaction strategy. By also showcasing the traversal of isolated branches, this work makes an initial contribution toward enabling drone flight across cluttered vegetation, with potential applications in environmental monitoring, precision agriculture, and search and rescue.
动物通过直接的身体互动穿越植被,利用整个身体推开并沿着柔顺的障碍物滑动。目前的无人机缺乏这种源于身体形态与由传感调制的反馈控制之间协同作用的互动灵活性。从自然界获得灵感,我们表明面向任务的设计允许配备简约控制器的无人机穿越具有未知弹性响应的障碍物。一个盘状的传感外壳能够在外壳的任何位置建立并感知接触,并便于沿着障碍物滑动。这简化了控制策略的形式化,该策略既不需要与环境相互作用的模型,也不需要用于在推和滑之间交替的高级切换条件。我们使用基于优化的控制器,即使弹性响应未知且可变,该控制器也能确保对机器人状态的安全约束,并在交互过程中抑制环境的振荡。使用具有18至155.5 N mm/rad三种不同刚度值的铰接表面进行的实验评估,验证了所提出的具身空中物理交互策略。通过展示对孤立树枝的穿越,这项工作为使无人机能够在杂乱的植被中飞行做出了初步贡献,在环境监测、精准农业以及搜索和救援等方面具有潜在应用。
Bioinspir Biomim. 2023-11-17
Front Robot AI. 2022-10-13
Bioinspir Biomim. 2018-2-2
Bioinspir Biomim. 2018-2-2
Front Robot AI. 2022-12-7
J Exp Biol. 2022-5-15
Nat Commun. 2025-8-11
Sensors (Basel). 2024-12-6
Bioinspir Biomim. 2023-11-17
Sci Robot. 2022-5-4
J Exp Biol. 2022-5-15
Sci Robot. 2021-10-6
Sci Robot. 2018-9-26
Sci Robot. 2019-2-13
Sci Robot. 2020-4-22