Suppr超能文献

未知环境中织物软体机器人基于模型的接触检测与位置控制

Model-based contact detection and position control of a fabric soft robot in unknown environments.

作者信息

Qiao Zhi, Nguyen Pham H, Zhang Wenlong

机构信息

School for Engineering of Matter Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States.

Aerial Robotics Lab, Imperial College London, London, England, United Kingdom.

出版信息

Front Robot AI. 2022 Oct 13;9:997366. doi: 10.3389/frobt.2022.997366. eCollection 2022.

Abstract

Soft robots have shown great potential to enable safe interactions with unknown environments due to their inherent compliance and variable stiffness. However, without knowledge of potential contacts, a soft robot could exhibit rigid behaviors in a goal-reaching task and collide into obstacles. In this paper, we introduce a Sliding Mode Augmented by Reactive Transitioning (SMART) controller to detect the contact events, adjust the robot's desired trajectory, and reject estimated disturbances in a goal reaching task. We employ a sliding mode controller to track the desired trajectory with a nonlinear disturbance observer (NDOB) to estimate the lumped disturbance, and a switching algorithm to adjust the desired robot trajectories. The proposed controller is validated on a pneumatic-driven fabric soft robot whose dynamics is described by a new extended rigid-arm model to fit the actuator design. A stability analysis of the proposed controller is also presented. Experimental results show that, despite modeling uncertainties, the robot can detect obstacles, adjust the reference trajectories to maintain compliance, and recover to track the original desired path once the obstacle is removed. Without force sensors, the proposed model-based controller can adjust the robot's stiffness based on the estimated disturbance to achieve goal reaching and compliant interaction with unknown obstacles.

摘要

由于其固有的柔顺性和可变刚度,软体机器人在与未知环境进行安全交互方面显示出巨大潜力。然而,在不知道潜在接触的情况下,软体机器人在目标达成任务中可能会表现出刚性行为并撞到障碍物。在本文中,我们引入了一种基于反应性转换增强的滑模(SMART)控制器,用于在目标达成任务中检测接触事件、调整机器人的期望轨迹并抑制估计的干扰。我们采用滑模控制器通过非线性干扰观测器(NDOB)跟踪期望轨迹以估计集总干扰,并使用切换算法调整机器人的期望轨迹。所提出的控制器在一个气动驱动的织物软体机器人上进行了验证,该机器人的动力学由一个新的扩展刚性臂模型描述以适应致动器设计。还给出了所提出控制器的稳定性分析。实验结果表明,尽管存在建模不确定性,机器人仍能检测到障碍物,调整参考轨迹以保持柔顺性,并在障碍物移除后恢复以跟踪原始期望路径。在没有力传感器的情况下,所提出的基于模型的控制器可以根据估计的干扰调整机器人的刚度,以实现目标达成和与未知障碍物的柔顺交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c588/9612838/8733a96b4133/frobt-09-997366-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验