National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China.
Commun Biol. 2024 Mar 26;7(1):368. doi: 10.1038/s42003-024-06075-y.
Sugarcane (Saccharum spp.) is an important sugar and biofuel crop in the world. It is frequently subjected to drought stress, thus causing considerable economic losses. Transgenic technology is an effective breeding approach to improve sugarcane tolerance to drought using drought-inducible promoter(s) to activate drought-resistance gene(s). In this study, six different promoters were cloned from sugarcane bacilliform virus (SCBV) genotypes exhibiting high genetic diversity. In β-glucuronidase (GUS) assays, expression of one of these promoters (P) is similar to the one driven by the CaMV 35S promoter and >90% higher compared to the other cloned promoters and Ubi1. Three SCBV promoters (P, P, and P) function as drought-induced promoters in transgenic Arabidopsis plants. In Arabidopsis, GUS activity driven by promoter P is also upregulated by abscisic acid (ABA) and is 2.2-5.5-fold higher when compared to the same activity of two plant native promoters (P from sugarcane and P from Arabidopsis). Mutation analysis revealed that a putative promoter region 1 (PPR1) and two ABA response elements (ABREs) are required in promoter P to confer drought stress response and ABA induction. Yeast one-hybrid and electrophoretic mobility shift assays uncovered that transcription factors ScbZIP72 from sugarcane and AREB1 from Arabidopsis bind with two ABREs of promoter P. After ABA treatment or drought stress, the expression levels of endogenous ScbZIP72 and heterologous GUS are significantly increased in P:GUS transgenic sugarcane plants. Consequently, promoter P is a possible alternative promoter for genetic engineering of drought-resistant transgenic crops such as sugarcane.
甘蔗(Saccharum spp.)是世界上重要的糖料和生物燃料作物。它经常受到干旱胁迫的影响,因此造成了相当大的经济损失。转基因技术是一种有效的育种方法,可以利用干旱诱导启动子(s)来激活抗旱基因(s),从而提高甘蔗对干旱的耐受性。在这项研究中,从表现出高度遗传多样性的甘蔗棒状病毒(SCBV)基因型中克隆了六个不同的启动子。在β-葡萄糖醛酸酶(GUS)分析中,这些启动子之一(P)的表达与 CaMV 35S 启动子驱动的表达相似,比其他克隆的启动子和 Ubi1 高>90%。三个 SCBV 启动子(P、P 和 P)在转基因拟南芥植物中作为干旱诱导启动子发挥作用。在拟南芥中,启动子 P 驱动的 GUS 活性也被脱落酸(ABA)上调,与两个植物天然启动子(来自甘蔗的 P 和来自拟南芥的 P)的相同活性相比,提高了 2.2-5.5 倍。突变分析表明,在启动子 P 中,一个假定的启动子区域 1(PPR1)和两个 ABA 反应元件(ABREs)是赋予干旱胁迫反应和 ABA 诱导所必需的。酵母单杂交和电泳迁移率变动分析表明,来自甘蔗的 ScbZIP72 和来自拟南芥的 AREB1 转录因子与启动子 P 的两个 ABRE 结合。在 ABA 处理或干旱胁迫后,P:GUS 转基因甘蔗植物中内源 ScbZIP72 和异源 GUS 的表达水平显著增加。因此,启动子 P 是用于遗传工程抗旱转基因作物(如甘蔗)的一个可行的替代启动子。