Suppr超能文献

将氨基位点固定到孔分隔金属有机框架中用于高效分离丙炔/丙烯。

Immobilization of Amino-site into a Pore-Partitioned Metal-Organic Framework for Highly Efficient Separation of Propyne/Propylene.

作者信息

Huang Yuhang, Feng Yanfei, Li Yi, Tan Kui, Tang Jie, Bai Junfeng, Duan Jingui

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.

出版信息

Angew Chem Int Ed Engl. 2024 May 27;63(22):e202403421. doi: 10.1002/anie.202403421. Epub 2024 Apr 19.

Abstract

Adsorptive separation of propyne/propylene (CH/CH) is a crucial yet complex process, however, it remains a great difficulty in developing porous materials that can meet the requirements for practical applications, particularly with an exceptional ability to bind and store trace amounts of CH. Functionalization of pore-partitioned metal-organic frameworks (ppMOFs) is methodically suited for this challenge owing to the possibility of dramatically increasing binding sites on highly porous and confined domains. We here immobilized Lewis-basic (-NH) and Lewis-acidic (-NO) sites on this platform. Along with an integrated nature of high uptake of CH at 1 kPa, high uptake difference of CH-CH, moderated binding strength, promoted kinetic selectivity, trapping effect and high stability, the NH-decorated ppMOF (NTU-100-NH) can efficiently produce polymer-grade CH (99.95 %, 8.3 mmol ⋅ g) at room temperature, which is six times more than the NO-decorated crystal (NTU-100-NO). The in situ infrared spectroscopy, crystallographic analysis, and sequential blowing tests showed that the densely packed amino group in this highly porous system has a unique ability to recognize and stabilize CH molecules. Moving forward, the strategy of organic functionalization can be extended to other porous systems, making it a powerful tool to customize advanced materials for challenging tasks.

摘要

丙炔/丙烯(CH/CH)的吸附分离是一个至关重要但又复杂的过程,然而,开发能够满足实际应用要求的多孔材料仍然面临很大困难,尤其是在结合和储存痕量CH方面具有卓越能力的材料。由于在高度多孔且受限的区域显著增加结合位点的可能性,孔分隔金属有机框架(ppMOF)的功能化在方法上适合应对这一挑战。我们在此平台上固定了路易斯碱性(-NH)和路易斯酸性(-NO)位点。除了在1 kPa下对CH具有高吸附量、CH-CH的高吸附差异、适度的结合强度、促进的动力学选择性、捕获效应和高稳定性等综合特性外,NH修饰的ppMOF(NTU-100-NH)在室温下能够高效生产聚合物级CH(99.95 %,8.3 mmol ⋅ g),这是NO修饰晶体(NTU-100-NO)的六倍。原位红外光谱、晶体学分析和连续吹气测试表明,在这个高度多孔的体系中紧密堆积的氨基具有识别和稳定CH分子的独特能力。展望未来,有机功能化策略可以扩展到其他多孔体系,使其成为定制用于挑战性任务的先进材料的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验