School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales, Australia.
Children's Medical Research Institute, Sydney, New South Wales, Australia.
mSystems. 2024 Apr 16;9(4):e0097123. doi: 10.1128/msystems.00971-23. Epub 2024 Mar 27.
Small RNAs have been found to control a broad range of bacterial phenotypes including tolerance to antibiotics. Vancomycin tolerance in multidrug resistance is correlated with dysregulation of small RNAs although their contribution to antibiotic tolerance is poorly understood. RNA-RNA interactome profiling techniques are expanding our understanding of sRNA-mRNA interactions in bacteria; however, determining the function of these interactions for hundreds of sRNA-mRNA pairs is a major challenge. At steady-state, protein and mRNA abundances are often highly correlated and lower than expected protein abundance may indicate translational repression of an mRNA. To identify sRNA-mRNA interactions that regulate mRNA translation, we examined the correlation between gene transcript abundance, ribosome occupancy, and protein levels. We used the machine learning technique self-organizing maps (SOMs) to cluster genes with similar transcription and translation patterns and identified a cluster of mRNAs that appeared to be post-transcriptionally repressed. By integrating our clustering with sRNA-mRNA interactome data generated in vancomycin-tolerant by RNase III-CLASH, we identified sRNAs that may be mediating translational repression. We have confirmed sRNA-dependant post-transcriptional repression of several mRNAs in this cluster. Two of these interactions are mediated by RsaOI, a sRNA that is highly upregulated by vancomycin. We demonstrate the regulation of HPr and the cell-wall autolysin Atl. These findings suggest that RsaOI coordinates carbon metabolism and cell wall turnover during vancomycin treatment.
The emergence of multidrug-resistant (MRSA) is a major public health concern. Current treatment is dependent on the efficacy of last-line antibiotics like vancomycin. The most common cause of vancomycin treatment failure is strains with intermediate resistance or tolerance that arise through the acqusition of a diverse repertoire of point mutations. These strains have been shown to altered small RNA (sRNA) expression in response to antibiotic treatment. Here, we have used a technique termed RNase III-CLASH to capture sRNA interactions with their target mRNAs. To understand the function of these interactions, we have looked at RNA and protein abundance for mRNAs targeted by sRNAs. Messenger RNA and protein levels are generally well correlated and we use deviations from this correlation to infer post-transcriptional regulation and the function of individual sRNA-mRNA interactions. Using this approach we identify mRNA targets of the vancomycin-induced sRNA, RsaOI, that are repressed at the translational level. We find that RsaOI represses the cell wall autolysis Atl and carbon transporter HPr suggestion a link between vancomycin treatment and suppression of cell wall turnover and carbon metabolism.
小 RNA 已被发现可控制广泛的细菌表型,包括对抗生素的耐受性。尽管人们对小 RNA 对抗生素耐受性的贡献知之甚少,但多药耐药性中的万古霉素耐受性与小 RNA 的失调有关。RNA-RNA 相互作用谱分析技术正在扩展我们对细菌中 sRNA-mRNA 相互作用的理解;然而,确定数百对 sRNA-mRNA 对的这些相互作用的功能是一个主要挑战。在稳定状态下,蛋白质和 mRNA 的丰度通常高度相关,低于预期的蛋白质丰度可能表明 mRNA 的翻译抑制。为了鉴定调节 mRNA 翻译的 sRNA-mRNA 相互作用,我们检查了基因转录物丰度、核糖体占据和蛋白质水平之间的相关性。我们使用机器学习技术自组织映射 (SOM) 对具有相似转录和翻译模式的基因进行聚类,并鉴定出似乎是转录后抑制的 mRNA 簇。通过将我们的聚类与通过 RNase III-CLASH 在万古霉素耐受中生成的 sRNA-mRNA 相互作用组数据进行整合,我们鉴定出可能介导翻译抑制的 sRNA。我们已经在这个簇中确认了几个 mRNAs 的 sRNA 依赖性转录后抑制。这两种相互作用都由 RsaOI 介导,RsaOI 是一种受万古霉素高度上调的 sRNA。我们证明了 HPr 和细胞壁自溶酶 Atl 的调节。这些发现表明,RsaOI 在万古霉素治疗期间协调碳代谢和细胞壁周转。
多药耐药 (MRSA) 的出现是一个主要的公共卫生问题。目前的治疗依赖于万古霉素等最后一线抗生素的疗效。万古霉素治疗失败的最常见原因是通过获得一系列不同的点突变而出现的中间耐药或耐受菌株。这些菌株已被证明在抗生素治疗时改变了小 RNA(sRNA)的表达。在这里,我们使用了一种称为 RNase III-CLASH 的技术来捕获 sRNA 与其靶 mRNA 的相互作用。为了了解这些相互作用的功能,我们研究了受 sRNA 靶向的 mRNA 的 RNA 和蛋白质丰度。信使 RNA 和蛋白质水平通常高度相关,我们使用这种相关性的偏差来推断转录后调节和单个 sRNA-mRNA 相互作用的功能。使用这种方法,我们确定了万古霉素诱导的 sRNA、RsaOI 的 mRNA 靶标,这些靶标在翻译水平受到抑制。我们发现 RsaOI 抑制细胞壁自溶 Atl 和碳转运蛋白 HPr,表明万古霉素治疗与细胞壁周转和碳代谢抑制之间存在联系。