Navarro-López Diego E, Perfecto-Avalos Yocanxóchitl, Zavala Araceli, de Luna Marco A, Sanchez-Martinez Araceli, Ceballos-Sanchez Oscar, Tiwari Naveen, López-Mena Edgar R, Sanchez-Ante Gildardo
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico.
Antibiotics (Basel). 2024 Feb 27;13(3):220. doi: 10.3390/antibiotics13030220.
The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing these properties requires a deep understanding of complex interactions. This study incorporated data-driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles. The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum concentration, no significant variations in structural, morphological, and optical properties were observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and 55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum content and particle size were irrelevant, despite what can be assumed. This approach offers a promising avenue for developing effective and tailored strategies to reduce the time and cost of developing antimicrobial nanoparticles.
抗生素耐药细菌的增加是一项全球性的健康挑战。由于其独特的性质,金属氧化物纳米颗粒在解决这一问题方面显示出前景。然而,优化这些性质需要深入了解复杂的相互作用。本研究采用数据驱动的机器学习来预测细菌对镧掺杂氧化锌纳米颗粒的存活率。分析了镧离子掺入氧化锌的效果。即使镧浓度很高,也未观察到结构、形态和光学性质有显著变化。对镧掺杂氧化锌纳米颗粒对革兰氏阳性菌和革兰氏阴性菌的抗菌活性进行了定性和定量评估。纳米颗粒分别导致大肠杆菌、铜绿假单胞菌和金黄色葡萄球菌60%、95%和55%的细菌死亡。使用多层感知器、K近邻、梯度提升和极端随机树等算法来预测细菌存活率。在这些模型中,极端随机树表现最佳,准确率为95.08%。特征相关性分析提取了预测细菌存活率的最重要属性。尽管可以做出假设,但镧含量和粒径并不相关。这种方法为开发有效且量身定制的策略提供了一条有前景的途径,以减少开发抗菌纳米颗粒的时间和成本。