Suppr超能文献

低盐饮食调节代谢和信号转导基因组结构,并重塑心脏正常和慢性病理通路。

Low-Salt Diet Regulates the Metabolic and Signal Transduction Genomic Fabrics, and Remodels the Cardiac Normal and Chronic Pathological Pathways.

作者信息

Iacobas Dumitru A, Allen Haile, Iacobas Sanda

机构信息

Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA.

Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.

出版信息

Curr Issues Mol Biol. 2024 Mar 12;46(3):2355-2385. doi: 10.3390/cimb46030150.

Abstract

Low-salt diet (LSD) is a constant recommendation to hypertensive patients, but the genomic mechanisms through which it improves cardiac pathophysiology are still not fully understood. Our publicly accessible transcriptomic dataset of the left ventricle myocardium of adult male mice subjected to prolonged LSD or normal diet was analyzed from the perspective of the Genomic Fabric Paradigm. We found that LSD shifted the metabolic priorities by increasing the transcription control for fatty acids biosynthesis while decreasing it for steroid hormone biosynthesis. Moreover, LSD remodeled pathways responsible for cardiac muscle contraction (CMC), chronic Chagas (CHA), diabetic (DIA), dilated (DIL), and hypertrophic (HCM) cardiomyopathies, and their interplays with the glycolysis/glucogenesis (GLY), oxidative phosphorylation (OXP), and adrenergic signaling in cardiomyocytes (ASC). For instance, the statistically ( < 0.05) significant coupling between GLY and ASC was reduced by LSD from 13.82% to 2.91% (i.e., -4.75×), and that of ASC with HCM from 10.50% to 2.83% (-3.71×). The substantial up-regulation of the CMC, ASC, and OXP genes, and the significant weakening of the synchronization of the expression of the HCM, CHA, DIA, and DIL genes within their respective fabrics justify the benefits of the LSD recommendation.

摘要

低盐饮食(LSD)一直是高血压患者的建议,但它改善心脏病理生理学的基因组机制仍未完全了解。我们从基因组结构范式的角度分析了成年雄性小鼠左心室心肌的公开转录组数据集,这些小鼠接受了长期的低盐饮食或正常饮食。我们发现,低盐饮食通过增加脂肪酸生物合成的转录控制,同时减少类固醇激素生物合成的转录控制,改变了代谢优先级。此外,低盐饮食重塑了负责心肌收缩(CMC)、慢性恰加斯病(CHA)、糖尿病(DIA)、扩张型(DIL)和肥厚型(HCM)心肌病的途径,以及它们与心肌细胞中糖酵解/糖异生(GLY)、氧化磷酸化(OXP)和肾上腺素能信号传导(ASC)的相互作用。例如,低盐饮食使GLY和ASC之间的统计学显著耦合(<0.05)从13.82%降至2.91%(即-4.75倍),ASC与HCM之间的耦合从10.50%降至2.83%(-3.71倍)。CMC、ASC和OXP基因的大量上调,以及HCM、CHA、DIA和DIL基因在各自结构内表达同步性的显著减弱,证明了低盐饮食建议的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc57/10969083/1f9a95d7402e/cimb-46-00150-g001.jpg

相似文献

2
Functional genomic fabrics are remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy.
Microbes Infect. 2018 Mar;20(3):185-195. doi: 10.1016/j.micinf.2017.11.003. Epub 2017 Nov 20.
3
Cardiac Insulin Signaling Regulates Glycolysis Through Phosphofructokinase 2 Content and Activity.
J Am Heart Assoc. 2017 Dec 4;6(12):e007159. doi: 10.1161/JAHA.117.007159.
4
MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations.
J Mol Cell Cardiol. 2013 Dec;65:59-66. doi: 10.1016/j.yjmcc.2013.09.012. Epub 2013 Sep 29.
5
Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy.
Circulation. 2022 Apr 19;145(16):1238-1253. doi: 10.1161/CIRCULATIONAHA.121.056265. Epub 2022 Apr 6.
7
Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy.
Eur J Clin Invest. 1999 Jun;29(6):469-77. doi: 10.1046/j.1365-2362.1999.00468.x.
8
Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium.
J Mol Cell Cardiol. 2015 Jul;84:179-90. doi: 10.1016/j.yjmcc.2015.04.026. Epub 2015 May 2.

引用本文的文献

1
Mental disorders after myocardial infarction: potential mediator role for chemokines in heart-brain interaction?
J Geriatr Cardiol. 2024 Sep 28;21(9):913-926. doi: 10.26599/1671-5411.2024.09.004.

本文引用的文献

1
Genomic Fabrics of the Excretory System's Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma.
Curr Issues Mol Biol. 2023 Nov 24;45(12):9471-9499. doi: 10.3390/cimb45120594.
3
Loss of sodium current caused by a Brugada syndrome-associated variant is determined by patient-specific genetic background.
Heart Rhythm. 2024 Mar;21(3):331-339. doi: 10.1016/j.hrthm.2023.11.019. Epub 2023 Nov 24.
5
Dracorhodin targeting CMPK2 attenuates inflammation: A novel approach to sepsis therapy.
Clin Transl Med. 2023 Oct;13(10):e1449. doi: 10.1002/ctm2.1449.
6
Heat-shock protein 90α protects NME1 against degradation and suppresses metastasis of breast cancer.
Br J Cancer. 2023 Nov;129(10):1679-1691. doi: 10.1038/s41416-023-02435-3. Epub 2023 Sep 20.
8
Non-neuronal cholinergic system delays cardiac remodelling in type 1 diabetes.
Heliyon. 2023 Jun 19;9(6):e17434. doi: 10.1016/j.heliyon.2023.e17434. eCollection 2023 Jun.
9
Top-down proteomics of myosin light chain isoforms define chamber-specific expression in the human heart.
J Mol Cell Cardiol. 2023 Aug;181:89-97. doi: 10.1016/j.yjmcc.2023.06.003. Epub 2023 Jun 14.
10
Novel Drug Targets for Atrial Fibrillation Identified Through Mendelian Randomization Analysis of the Blood Proteome.
Cardiovasc Drugs Ther. 2024 Dec;38(6):1215-1222. doi: 10.1007/s10557-023-07467-8. Epub 2023 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验