Suppr超能文献

一项评估迁移学习方法用于肠道图像分析以帮助确定犬蛋白丢失性肠病治疗反应的初步研究。

A Preliminary Study Assessing a Transfer Learning Approach to Intestinal Image Analysis to Help Determine Treatment Response in Canine Protein-Losing Enteropathy.

作者信息

Kathrani Aarti, Trewin Isla, Ancheta Kenneth, Psifidi Androniki, Le Calvez Sophie, Williams Jonathan

机构信息

Clinical Science and Services, Royal Veterinary College, Hatfield AL9 7TA, UK.

Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK.

出版信息

Vet Sci. 2024 Mar 14;11(3):129. doi: 10.3390/vetsci11030129.

Abstract

Dogs with protein-losing enteropathy (PLE) caused by inflammatory enteritis, intestinal lymphangiectasia, or both, have a guarded prognosis, with death occurring as a result of the disease in approximately 50% of cases. Although dietary therapy alone is significantly associated with a positive outcome, there is limited ability to differentiate between food-responsive (FR) PLE and immunosuppressant-responsive (IR) PLE at diagnosis in dogs. Our objective was to determine if a transfer learning computational approach to image classification on duodenal biopsy specimens collected at diagnosis was able to differentiate FR-PLE from IR-PLE. This was a retrospective study using paraffin-embedded formalin-fixed duodenal biopsy specimens collected during upper gastrointestinal tract endoscopy as part of the diagnostic investigations from 17 client-owned dogs with PLE due to inflammatory enteritis at a referral teaching hospital that were subsequently classified based on treatment response into FR-PLE ( = 7) or IR-PLE ( = 10) after 4 months of follow-up. A machine-based algorithm was used on lower magnification and higher resolution images of endoscopic duodenal biopsy specimens. Using the pre-trained Convolutional Neural Network model with a 70/30 training/test ratio for images, the model was able to differentiate endoscopic duodenal biopsy images from dogs with FR-PLE and IR-PLE with an accuracy of 83.78%. Our study represents an important first step toward the use of machine learning in improving the decision-making process for clinicians with regard to the initial treatment of canine PLE.

摘要

由炎症性肠炎、肠淋巴管扩张症或两者共同引起的蛋白丢失性肠病(PLE)犬预后不佳,约50%的病例会因该病死亡。尽管单纯饮食疗法与良好预后显著相关,但在犬类诊断时,区分食物反应性(FR)PLE和免疫抑制剂反应性(IR)PLE的能力有限。我们的目的是确定一种基于迁移学习的计算方法,用于对诊断时采集的十二指肠活检标本进行图像分类,是否能够区分FR-PLE和IR-PLE。这是一项回顾性研究,使用了在上消化道内窥镜检查期间收集的石蜡包埋、福尔马林固定的十二指肠活检标本,这些标本来自一家转诊教学医院的17只因炎症性肠炎患有PLE的客户拥有的犬,作为诊断调查的一部分,随后在4个月的随访后根据治疗反应将其分为FR-PLE(n = 7)或IR-PLE(n = 10)。对内镜十二指肠活检标本的低倍和高分辨率图像使用基于机器的算法。使用预训练的卷积神经网络模型,图像的训练/测试比例为70/30,该模型能够区分FR-PLE和IR-PLE犬的内镜十二指肠活检图像,准确率为83.78%。我们的研究代表了朝着使用机器学习改善临床医生对犬PLE初始治疗决策过程迈出的重要第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27de/10975967/1a39dc4e47f0/vetsci-11-00129-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验