Suppr超能文献

[分离信号源的言语辨别与言语刺激的声音定位:学习效果与可重复性]

[Speech discrimination with separated signal sources and sound localization with speech stimuli : Learning effects and reproducibility].

作者信息

Buth Svenja, Baljić Izet, Mewes Alexander, Hey Matthias

机构信息

Medizinische Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland.

HNO-Klinik, Audiologie, Campus Kiel, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Str. 3, Haus B1, 24105, Kiel, Deutschland.

出版信息

HNO. 2024 Jul;72(7):504-514. doi: 10.1007/s00106-024-01426-x. Epub 2024 Mar 27.

Abstract

BACKGROUND

Binaural hearing enables better speech comprehension in noisy environments and is necessary for acoustic spatial orientation. This study investigates speech discrimination in noise with separated signal sources and measures sound localization. The aim was to study characteristics and reproducibility of two selected measurement techniques which seem to be suitable for description of the aforementioned aspects of binaural hearing.

MATERIALS AND METHODS

Speech reception thresholds (SRT) in noise and test-retest reliability were collected from 55 normal-hearing adults for a spatial setup of loudspeakers with angles of ± 45° and ± 90° using the Oldenburg sentence test. The investigations of sound localization were conducted in a semicircle and fullcircle setup (7 and 12 equidistant loudspeakers).

RESULTS

SRT (SN: -14.1 dB SNR; SN: -16.4 dB SNR; SN: -13.1 dB SNR; SN: -13.4 dB SNR) and test-retest reliability (4 to 6 dB SNR) were collected for speech intelligibility in noise with separated signals. The procedural learning effect for this setup could only be mitigated with 120 training sentences. Significantly smaller SRT values, resulting in better speech discrimination, were found for the test situation of the right compared to the left ear. RMS values could be gathered for sound localization in the semicircle (1,9°) as well as in the fullcircle setup (11,1°). Better results were obtained in the retest of the fullcircle setup.

CONCLUSION

When using the Oldenburg sentence test in noise with spatially separated signals, it is mandatory to perform a training session of 120 sentences in order to minimize the procedural learning effect. Ear-specific SRT values for speech discrimination in noise with separated signal sources are required, which is probably due to the right-ear advantage. A training is recommended for sound localization in the fullcircle setup.

摘要

背景

双耳听觉有助于在嘈杂环境中更好地理解语音,并且是声学空间定向所必需的。本研究调查了信号源分离时噪声中的语音辨别能力,并测量了声音定位。目的是研究两种选定的测量技术的特性和可重复性,这两种技术似乎适用于描述双耳听觉的上述方面。

材料与方法

使用奥尔登堡句子测试,从55名听力正常的成年人中收集了噪声中的语音接收阈值(SRT)和重测信度,用于扬声器角度为±45°和±90°的空间设置。声音定位研究在半圆形和全圆形设置(分别有7个和12个等距扬声器)中进行。

结果

收集了信号分离时噪声中语音可懂度的SRT(SN:-14.1 dB SNR;SN:-16.4 dB SNR;SN:-13.1 dB SNR;SN:-13.4 dB SNR)和重测信度(4至6 dB SNR)。该设置的程序学习效应只有通过使用120个训练句子才能减轻。与左耳相比,右耳测试情况下的SRT值显著更小,这导致更好的语音辨别能力。可以收集半圆形(1.9°)和全圆形设置(11.1°)中声音定位的均方根值。全圆形设置的重测结果更好。

结论

在使用奥尔登堡句子测试进行信号空间分离的噪声测试时,必须进行120个句子的训练,以尽量减少程序学习效应。需要针对信号源分离的噪声中的语音辨别获得特定耳朵的SRT值,这可能是由于右耳优势。建议对全圆形设置中的声音定位进行训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6719/11192817/33f32ecf802a/106_2024_1426_Fig1_HTML.jpg

相似文献

3
Bilateral use of active middle ear implants: speech discrimination results in noise.
Eur Arch Otorhinolaryngol. 2016 Aug;273(8):2065-72. doi: 10.1007/s00405-015-3783-6. Epub 2015 Sep 19.
4
Sound localization in noise by normal-hearing listeners and cochlear implant users.
Ear Hear. 2012 Jul-Aug;33(4):445-57. doi: 10.1097/AUD.0b013e318257607b.
5
Investigation of a matrix sentence test in noise: reproducibility and discrimination function in cochlear implant patients.
Int J Audiol. 2014 Dec;53(12):895-902. doi: 10.3109/14992027.2014.938368. Epub 2014 Aug 20.
6
Development and evaluation of the Turkish matrix sentence test.
Int J Audiol. 2015;54 Suppl 2:51-61. doi: 10.3109/14992027.2015.1074735. Epub 2015 Oct 7.
8
Polish sentence matrix test for speech intelligibility measurement in noise.
Int J Audiol. 2010 Jun;49(6):444-54. doi: 10.3109/14992021003681030.

本文引用的文献

1
Effect of Contralateral Noise on Speech Intelligibility.
Neuroscience. 2021 Apr 1;459:59-69. doi: 10.1016/j.neuroscience.2021.01.034. Epub 2021 Feb 4.
2
[Current Audiological Diagnostics].
Laryngorhinootologie. 2017 Apr;96(S 01):S4-S42. doi: 10.1055/s-0042-120339. Epub 2017 May 12.
3
Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper.
Audiol Neurootol. 2016;21(6):391-398. doi: 10.1159/000455058. Epub 2017 Mar 21.
4
[Speech audiometry for indication of conventional and implantable hearing aids].
HNO. 2017 Mar;65(3):195-202. doi: 10.1007/s00106-016-0291-y.
5
[The systematic selection of speech audiometric procedures].
HNO. 2017 Mar;65(3):219-227. doi: 10.1007/s00106-016-0249-0.
6
Modeling the Test-Retest Statistics of a Localization Experiment in the Full Horizontal Plane.
Otol Neurotol. 2016 Oct;37(9):e391-9. doi: 10.1097/MAO.0000000000001174.
7
Investigation of a matrix sentence test in noise: reproducibility and discrimination function in cochlear implant patients.
Int J Audiol. 2014 Dec;53(12):895-902. doi: 10.3109/14992027.2014.938368. Epub 2014 Aug 20.
8
Visualizing samples with box plots.
Nat Methods. 2014 Feb;11(2):119-20. doi: 10.1038/nmeth.2813.
10
From ear to brain.
Brain Cogn. 2011 Jul;76(2):214-7. doi: 10.1016/j.bandc.2010.11.009. Epub 2011 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验