Suppr超能文献

基于学习的实时触觉纹理渲染模型的开发与评估

Development and Evaluation of a Learning-Based Model for Real-Time Haptic Texture Rendering.

作者信息

Heravi Negin, Culbertson Heather, Okamura Allison M, Bohg Jeannette

出版信息

IEEE Trans Haptics. 2024 Oct-Dec;17(4):705-716. doi: 10.1109/TOH.2024.3382258. Epub 2024 Dec 19.

Abstract

Current Virtual Reality (VR) environments lack the haptic signals that humans experience during real-life interactions, such as the sensation of texture during lateral movement on a surface. Adding realistic haptic textures to VR environments requires a model that generalizes to variations of a user's interaction and to the wide variety of existing textures in the world. Current methodologies for haptic texture rendering exist, but they usually develop one model per texture, resulting in low scalability. We present a deep learning-based action-conditional model for haptic texture rendering and evaluate its perceptual performance in rendering realistic texture vibrations through a multi-part human user study. This model is unified over all materials and uses data from a vision-based tactile sensor (GelSight) to render the appropriate surface conditioned on the user's action in real-time. For rendering texture, we use a high-bandwidth vibrotactile transducer attached to a 3D Systems Touch device. The results of our user study shows that our learning-based method creates high-frequency texture renderings with comparable or better quality than state-of-the-art methods without the need to learn a separate model per texture. Furthermore, we show that the method is capable of rendering previously unseen textures using a single GelSight image of their surface.

摘要

当前的虚拟现实(VR)环境缺乏人类在现实生活互动中所体验到的触觉信号,比如在表面横向移动时的质感。在VR环境中添加逼真的触觉纹理需要一个能推广到用户互动变化以及世界上各种现有纹理的模型。目前存在用于触觉纹理渲染的方法,但它们通常每种纹理开发一个模型,导致可扩展性较低。我们提出了一种基于深度学习的用于触觉纹理渲染的动作条件模型,并通过多部分的人类用户研究评估其在渲染逼真纹理振动方面的感知性能。该模型在所有材料上是统一的,并使用来自基于视觉的触觉传感器(GelSight)的数据,以根据用户的动作实时渲染合适的表面。为了渲染纹理,我们使用连接到3D Systems Touch设备的高带宽振动触觉换能器。我们用户研究的结果表明,我们基于学习的方法创建的高频纹理渲染在质量上与现有技术方法相当或更好,且无需为每种纹理学习单独的模型。此外,我们表明该方法能够使用表面的单个GelSight图像渲染以前未见过的纹理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验