Suppr超能文献

CBF 表达诱导物 1 通过直接激活水杨酸信号促进冷增强免疫。

INDUCER OF CBF EXPRESSION 1 promotes cold-enhanced immunity by directly activating salicylic acid signaling.

机构信息

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Plant Cell. 2024 Jul 2;36(7):2587-2606. doi: 10.1093/plcell/koae096.

Abstract

Cold stress affects plant immune responses, and this process may involve the salicylic acid (SA) signaling pathway. However, the underlying mechanism by which low-temperature signals coordinate with SA signaling to regulate plant immunity remains unclear. Here, we found that low temperatures enhanced the disease resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000. This process required INDUCER OF CBF EXPRESSION 1 (ICE1), the core transcription factor in cold-signal cascades. ICE1 physically interacted with NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the master regulator of the SA signaling pathway. Enrichment of ICE1 on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter and its ability to transcriptionally activate PR1 were enhanced by NPR1. Further analyses revealed that cold stress signals cooperate with SA signals to facilitate plant immunity against pathogen attack in an ICE1-dependent manner. Cold treatment promoted interactions of NPR1 and TGACG-BINDING FACTOR 3 (TGA3) with ICE1 and increased the ability of the ICE1-TGA3 complex to transcriptionally activate PR1. Together, our results characterize a critical role of ICE1 as an indispensable regulatory node linking low-temperature-activated and SA-regulated immunity. Understanding this crucial role of ICE1 in coordinating multiple signals associated with immunity broadens our understanding of plant-pathogen interactions.

摘要

冷应激会影响植物的免疫反应,而这一过程可能涉及水杨酸(SA)信号通路。然而,低温信号与 SA 信号如何协调来调节植物免疫的潜在机制尚不清楚。在这里,我们发现低温增强了拟南芥对丁香假单胞菌 pv.番茄 DC3000 的抗病性。这一过程需要低温信号级联的核心转录因子诱导型钙结合因子 1(ICE1)。ICE1 与水杨酸信号通路的主调控因子非表达病原体相关基因 1(NPR1)发生物理相互作用。NPR1 增强了 ICE1 在病程相关基因 1(PR1)启动子上的富集及其转录激活 PR1 的能力。进一步的分析表明,冷应激信号与 SA 信号协同作用,以 ICE1 依赖的方式促进植物对病原体攻击的免疫反应。冷处理促进了 NPR1 和 TGACG-结合因子 3(TGA3)与 ICE1 的相互作用,并增加了 ICE1-TGA3 复合物转录激活 PR1 的能力。综上所述,我们的研究结果表明,ICE1 作为一个不可或缺的调控节点,在连接低温激活和 SA 调节的免疫中起着关键作用。了解 ICE1 在协调与免疫相关的多种信号中的这一关键作用,拓宽了我们对植物-病原体相互作用的理解。

相似文献

3
Ethylene Response Factor ERF11 Activates Transcription to Regulate Immunity to .
Plant Physiol. 2019 Jun;180(2):1132-1151. doi: 10.1104/pp.18.01209. Epub 2019 Mar 29.
7
Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae.
Plant Physiol Biochem. 2013 Dec;73:383-91. doi: 10.1016/j.plaphy.2013.10.024. Epub 2013 Oct 26.
8
NPR1 Promotes Its Own and Target Gene Expression in Plant Defense by Recruiting CDK8.
Plant Physiol. 2019 Sep;181(1):289-304. doi: 10.1104/pp.19.00124. Epub 2019 May 20.

引用本文的文献

1
Living with temperature changes: Salicylic acid at the crossroads of plant immunity and temperature resilience.
Sci Adv. 2025 Sep 12;11(37):eady3327. doi: 10.1126/sciadv.ady3327. Epub 2025 Sep 10.
2
Autophagy deficiency confers freezing tolerance in Arabidopsis thaliana.
BMC Plant Biol. 2025 Jul 30;25(1):994. doi: 10.1186/s12870-025-07066-9.
4
A Comprehensive Review of Phenolic Compounds in Horticultural Plants.
Int J Mol Sci. 2025 Jun 16;26(12):5767. doi: 10.3390/ijms26125767.
7
Salicylic acid improves chilling tolerance via CsNPR1-CsICE1 interaction in grafted cucumbers.
Hortic Res. 2024 Aug 9;11(10):uhae231. doi: 10.1093/hr/uhae231. eCollection 2024 Oct.
8
Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis.
Plant Cell. 2024 Oct 3;36(10):4293-4308. doi: 10.1093/plcell/koae210.
9
Bridging the perception: ICE1 links cold sensing and salicylic acid signaling.
Plant Cell. 2024 Jul 2;36(7):2457-2458. doi: 10.1093/plcell/koae115.

本文引用的文献

1
The battle within: How pathogen effectors suppress NLR-mediated immunity.
Curr Opin Plant Biol. 2023 Aug;74:102396. doi: 10.1016/j.pbi.2023.102396. Epub 2023 Jun 7.
3
U-box E3 ubiquitin ligase PUB8 attenuates abscisic acid responses during early seedling growth.
Plant Physiol. 2023 Apr 3;191(4):2519-2533. doi: 10.1093/plphys/kiad044.
4
The origin and evolution of salicylic acid signaling and biosynthesis in plants.
Mol Plant. 2023 Jan 2;16(1):245-259. doi: 10.1016/j.molp.2022.12.002. Epub 2022 Dec 6.
5
Salicylic acid inhibits gibberellin signaling through receptor interactions.
Mol Plant. 2022 Nov 7;15(11):1759-1771. doi: 10.1016/j.molp.2022.10.001. Epub 2022 Oct 4.
6
Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance.
EMBO J. 2022 Oct 4;41(19):e110682. doi: 10.15252/embj.2022110682. Epub 2022 Aug 11.
7
Increasing the resilience of plant immunity to a warming climate.
Nature. 2022 Jul;607(7918):339-344. doi: 10.1038/s41586-022-04902-y. Epub 2022 Jun 29.
8
Structural basis of NPR1 in activating plant immunity.
Nature. 2022 May;605(7910):561-566. doi: 10.1038/s41586-022-04699-w. Epub 2022 May 11.
9
Evasion of plant immunity by microbial pathogens.
Nat Rev Microbiol. 2022 Aug;20(8):449-464. doi: 10.1038/s41579-022-00710-3. Epub 2022 Mar 16.
10
Thirty years of resistance: Zig-zag through the plant immune system.
Plant Cell. 2022 Apr 26;34(5):1447-1478. doi: 10.1093/plcell/koac041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验