Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France.
Inserm, UMR-S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.
Cell Calcium. 2024 May;119:102871. doi: 10.1016/j.ceca.2024.102871. Epub 2024 Mar 19.
The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca sensors that trigger store-operated Ca entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the I current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the I current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca cycling, we observed, using Rhod-2/AM Ca imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca (mCa) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IPRs), voltage-dependent anion channel (VDAC), mitochondrial Ca uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa uptake capacity possibly via the STIM2-IPRs-VDAC-MCU and MNF2 complex.
基质相互作用分子(STIMs)是肌浆网(SR)Ca 传感器,可触发多种细胞类型的储存操纵性 Ca 内流(SOCE)。虽然 STIM1 同工型一直是心脏病理生理学研究的焦点,但同源物 STIM2 的功能仍然未知。我们使用 Ca 成像和膜片钳技术表明,siRNA 敲低(KD)STIM2 会增加新生儿大鼠心室心肌细胞(NRVM)中的 SOCE 和 I 电流。在这个心肌细胞模型中,我们鉴定了 Stim2.1 和 Stim2.2 剪接变体的转录表达,其中 Stim2.2 占主导地位。使用传统和超分辨率共聚焦显微镜(STED),我们发现外源性 STIM2.1 和 STIM2.2 在静止时形成具有网状组织的预聚类。在 SR Ca 储存耗尽后,一些 STIM2.1 和 STIM2.2 簇被转运到 SR-质膜(PM)连接处,并与 Orai1 共定位。过表达策略表明,STIM2.1 抑制 Orai1 介导的 SOCE 和 I 电流,而 STIM2.2 增强 SOCE。STIM2.2 增强的 SOCE也依赖于 TRPC1 和 TRPC4。即使 STIM2 KD 或剪接变体过表达不影响细胞溶胶 Ca 循环,我们也观察到,使用 Rhod-2/AM Ca 成像,Orai1 抑制或 STIM2.1 过表达消除了线粒体 Ca(mCa)摄取,而不是 STIM2 KD。我们还发现 STIM2 通过与肌醇三磷酸受体(IPRs)、电压依赖性阴离子通道(VDAC)、线粒体 Ca 单向转运体(MCU)和线粒体融合蛋白 2(MNF2)相互作用存在于线粒体相关内质网(ER)膜(MAMs)中。我们的结果表明,在 NRVMs 中,STIM2.1 构成了负调节 Orai1 产生的 SOCE 的主要功能变体。它可能通过 STIM2-IPRs-VDAC-MCU 和 MNF2 复合物参与控制 mCa 摄取能力。