Department of Soil Science, Stellenbosch University, Private Bag X1, Matieland, South Africa.
Isotope Climatology and Environmental Research Center, Institute for Nuclear Research, Bem ter 18/c, Debrecen, Hungary.
Sci Total Environ. 2024 May 20;926:171760. doi: 10.1016/j.scitotenv.2024.171760. Epub 2024 Mar 25.
Ecosystems that offer carbon sequestration by leaching bicarbonate to groundwater are valuable natural capital. One region that may offer this service is the west coast of South Africa. Over 20 % is covered by soil mounds ("heuweltjies") up to 40 m diameter, 2 m high, inhabited by the southern harvester termite Microhodotermes viator and enriched in soil organic and inorganic carbon and soluble minerals. We aimed to generate radiogenic and stable isotope data for soils and groundwater in a region where these data are absent, to 1) verify the atmosphere-soil-groundwater link, and 2) resolve the timing and pattern of calcite dissolution and water infiltration in the landscape. Results show that soil and groundwater sulfate have the same marine aerosol source. Episodic calcite dissolution in mound centers, which increased during periods of global cooling, has been set against background input of marine aerosols since before the Last Glacial according to radiocarbon (C) ages. Our data push back soil organic carbon C ages of inhabited termite mounds to 13-19 ka (kiloannum, thousand years before present), nest carbonate C ages to 33 ka, and mound soil carbonate C ages to 34 ka, making these the oldest active termite features ever dated. These ages are consistent with soil organic carbon and carbonate C ages of regional, non-mound, coastal petrocalcic horizons formed by accumulation of carbonate leached from their overlying aeolian dune fields. Harvesting activities of termites inject younger organic material around nests >1 m deep, leading to continuous renewal of important soil carbon reservoirs at depth. Termite bioturbation increases the system's ability to dissolve carbonate. The central, bioturbated part of the mounds have greater infiltration depths and greater calcite dissolution, whereas surrounding soils experienced more surface runoff. Calcareous termite mounds offer a mechanism to sequester CO through dissolution and leaching of soil carbonate-bicarbonate to groundwater.
通过将碳酸氢盐淋滤到地下水中来实现碳固存的生态系统是有价值的自然资本。南非西海岸的一个地区可能提供这种服务。该地区有超过 20%的面积被直径达 40 米、高 2 米的土丘(“heuweltjies”)覆盖,这些土丘由南部收割白蚁 Microhodotermes viator 居住,并富含土壤有机和无机碳以及可溶性矿物质。我们的目标是在一个缺乏此类数据的地区生成土壤和地下水的放射性和稳定同位素数据,以 1)验证大气-土壤-地下水的联系,2)确定方解石溶解和水在景观中渗透的时间和模式。结果表明,土壤和地下水中的硫酸盐具有相同的海洋气溶胶源。在全球冷却时期增加的土丘中心的方解石溶解,根据放射性碳(C)年龄,自末次冰期之前就一直与海洋气溶胶的背景输入相抗衡。我们的数据将有白蚁居住的土丘的土壤有机碳 C 年龄推迟到 13-19 千年前(距今千年),巢碳酸盐 C 年龄推迟到 33 千年前,土丘土壤碳酸盐 C 年龄推迟到 34 千年前,这是有史以来最古老的活跃白蚁特征。这些年龄与区域非土丘沿海的、由从其上的风成沙丘场淋滤而来的碳酸盐积累形成的、新的亲石化土壤碳酸盐 C 年龄一致。白蚁的收割活动在 >1 米深的巢穴周围注入较年轻的有机物质,导致深度重要土壤碳储量的持续更新。白蚁生物扰动增加了系统溶解碳酸盐的能力。土丘的中心、生物扰动部分具有更大的入渗深度和更大的方解石溶解,而周围的土壤经历了更多的地表径流。钙质白蚁土丘提供了一种通过溶解和淋滤土壤碳酸盐-碳酸氢盐到地下水中来固定 CO 的机制。