Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China.
Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
J Clin Ultrasound. 2024 Jun;52(5):566-574. doi: 10.1002/jcu.23666. Epub 2024 Mar 27.
PURPOSE: To assess the predictive value of an ultrasound-based radiomics-clinical nomogram for grading residual cancer burden (RCB) in breast cancer patients. METHODS: This retrospective study of breast cancer patients who underwent neoadjuvant therapy (NAC) and ultrasound scanning between November 2020 and July 2023. First, a radiomics model was established based on ultrasound images. Subsequently, multivariate LR (logistic regression) analysis incorporating both radiomic scores and clinical factors was performed to construct a nomogram. Finally, Receiver operating characteristics (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate and validate the diagnostic accuracy and effectiveness of the nomogram. RESULTS: A total of 1122 patients were included in this study. Among them, 427 patients exhibited a favorable response to NAC chemotherapy, while 695 patients demonstrated a poor response to NAC therapy. The radiomics model achieved an AUC value of 0.84 in the training cohort and 0.83 in the validation cohort. The ultrasound-based radiomics-clinical nomogram achieved an AUC value of 0.90 in the training cohort and 0.91 in the validation cohort. CONCLUSIONS: Ultrasound-based radiomics-clinical nomogram can accurately predict the effectiveness of NAC therapy by predicting RCB grading in breast cancer patients.
目的:评估基于超声的放射组学-临床列线图预测乳腺癌患者残留肿瘤负荷(RCB)分级的预测价值。 方法:这是一项回顾性研究,纳入了 2020 年 11 月至 2023 年 7 月期间接受新辅助治疗(NAC)和超声扫描的乳腺癌患者。首先,基于超声图像建立放射组学模型。随后,进行多变量逻辑回归(LR)分析,纳入放射组学评分和临床因素,构建列线图。最后,采用受试者工作特征(ROC)曲线分析和决策曲线分析(DCA)评估和验证列线图的诊断准确性和有效性。 结果:本研究共纳入 1122 例患者。其中,427 例患者对 NAC 化疗有良好的反应,而 695 例患者对 NAC 治疗反应不佳。放射组学模型在训练队列中的 AUC 值为 0.84,在验证队列中的 AUC 值为 0.83。基于超声的放射组学-临床列线图在训练队列中的 AUC 值为 0.90,在验证队列中的 AUC 值为 0.91。 结论:基于超声的放射组学-临床列线图可通过预测乳腺癌患者的 RCB 分级,准确预测 NAC 治疗的效果。
Zhonghua Yi Xue Za Zhi. 2022-1-18