文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于超声的放射组学-临床列线图,用于无创预测乳腺癌残留肿瘤负荷分级。

Ultrasound-based radiomics-clinical nomogram for noninvasive prediction of residual cancer burden grading in breast cancer.

机构信息

Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China.

Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

出版信息

J Clin Ultrasound. 2024 Jun;52(5):566-574. doi: 10.1002/jcu.23666. Epub 2024 Mar 27.


DOI:10.1002/jcu.23666
PMID:38538081
Abstract

PURPOSE: To assess the predictive value of an ultrasound-based radiomics-clinical nomogram for grading residual cancer burden (RCB) in breast cancer patients. METHODS: This retrospective study of breast cancer patients who underwent neoadjuvant therapy (NAC) and ultrasound scanning between November 2020 and July 2023. First, a radiomics model was established based on ultrasound images. Subsequently, multivariate LR (logistic regression) analysis incorporating both radiomic scores and clinical factors was performed to construct a nomogram. Finally, Receiver operating characteristics (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate and validate the diagnostic accuracy and effectiveness of the nomogram. RESULTS: A total of 1122 patients were included in this study. Among them, 427 patients exhibited a favorable response to NAC chemotherapy, while 695 patients demonstrated a poor response to NAC therapy. The radiomics model achieved an AUC value of 0.84 in the training cohort and 0.83 in the validation cohort. The ultrasound-based radiomics-clinical nomogram achieved an AUC value of 0.90 in the training cohort and 0.91 in the validation cohort. CONCLUSIONS: Ultrasound-based radiomics-clinical nomogram can accurately predict the effectiveness of NAC therapy by predicting RCB grading in breast cancer patients.

摘要

目的:评估基于超声的放射组学-临床列线图预测乳腺癌患者残留肿瘤负荷(RCB)分级的预测价值。 方法:这是一项回顾性研究,纳入了 2020 年 11 月至 2023 年 7 月期间接受新辅助治疗(NAC)和超声扫描的乳腺癌患者。首先,基于超声图像建立放射组学模型。随后,进行多变量逻辑回归(LR)分析,纳入放射组学评分和临床因素,构建列线图。最后,采用受试者工作特征(ROC)曲线分析和决策曲线分析(DCA)评估和验证列线图的诊断准确性和有效性。 结果:本研究共纳入 1122 例患者。其中,427 例患者对 NAC 化疗有良好的反应,而 695 例患者对 NAC 治疗反应不佳。放射组学模型在训练队列中的 AUC 值为 0.84,在验证队列中的 AUC 值为 0.83。基于超声的放射组学-临床列线图在训练队列中的 AUC 值为 0.90,在验证队列中的 AUC 值为 0.91。 结论:基于超声的放射组学-临床列线图可通过预测乳腺癌患者的 RCB 分级,准确预测 NAC 治疗的效果。

相似文献

[1]
Ultrasound-based radiomics-clinical nomogram for noninvasive prediction of residual cancer burden grading in breast cancer.

J Clin Ultrasound. 2024-6

[2]
Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study.

Clin Breast Cancer. 2023-8

[3]
Computed Tomography-Based Radiomics Analysis for Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Patients.

J Comput Assist Tomogr. 2023

[4]
Construction and validation of a personalized nomogram of ultrasound for pretreatment prediction of breast cancer patients sensitive to neoadjuvant chemotherapy.

Br J Radiol. 2022-12-1

[5]
Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features.

J Xray Sci Technol. 2023

[6]
Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer.

Eur J Cancer. 2021-4

[7]
Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer.

Ultrason Imaging. 2024-11

[8]
Radiomic Nomogram for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer: Predictive Value of Staging Contrast-enhanced CT.

Clin Breast Cancer. 2021-8

[9]
Prediction of neoadjuvant chemotherapy pathological complete response for breast cancer based on radiomics nomogram of intratumoral and derived tissue.

BMC Med Imaging. 2024-1-20

[10]
[Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram].

Zhonghua Yi Xue Za Zhi. 2022-1-18

引用本文的文献

[1]
Intratumoral and peritumoral ultrasound radiomics analysis for predicting HER2-low expression in HER2-negative breast cancer patients: a retrospective analysis of dual-central study.

Discov Oncol. 2025-6-5

[2]
An XGBoost Machine Learning Based Model for Predicting Ki-67 Value ≥ 15% in TNM Stage Primary Breast Cancer Receiving Neoadjuvant Chemotherapy Using Clinical Data and Delta-Radiomic Features on Ultrasound Images and Overall Survival Analysis: A 5-Year Postoperative Follow-Up Study.

Technol Cancer Res Treat. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索