基于多参数 MRI 放射组学的列线图预测乳腺癌新辅助化疗反应的评价:一项多中心研究。
Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study.
机构信息
Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China.
Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
出版信息
Clin Breast Cancer. 2023 Aug;23(6):e331-e344. doi: 10.1016/j.clbc.2023.05.010. Epub 2023 May 27.
INTRODUCTION
This study evaluated the performance of primary foci of breast cancer on multiparametric magnetic resonance imaging (MRI) contributing to establish and validate radiomics-based nomograms for predicting the different pathological outcome of breast cancer patients after neoadjuvant chemotherapy (NAC).
MATERIALS AND METHODS
Retrospectively collected 387 patients with locally advanced breast cancer, all treated with NAC and received breast dynamic contrast-enhanced MRI (DCE-MRI) before NAC. Radiomics signatures were extracted from region of interest (ROI) on multiparametric MRI to build rad score. Clinical-pathologic data and radiological features established the clinical model. The comprehensive model featured rad-score, predictive clinical-pathologic data and radiological features, which was ultimately displayed as a nomogram. Patients were grouped in 2 different ways in accordance with the Miller-Payne (MP) grading of surgical specimens. The first grouping method: 181 patients with pathological reaction grades Ⅳ∼Ⅴ were included in the significant remission group, while 206 patients with pathological reaction grades Ⅰ∼Ⅲ were included in the nonsignificant remission group. The second grouping method: 117 patients with pathological complete response (pCR) were assigned to the pCR group, and 270 patients who failed to meet pCR were assigned to in the non-pCR group. Two combined nomograms are created from 2 grouped data for predicting different pathological responses to NAC. The area under the curves (AUC) of the receiver operating characteristic curves (ROC) were used to evaluate the performance of each model. While decision curve analysis (DCA) and calibration curves were used for estimating the clinical application value of the nomogram.
RESULTS
Two combined nomograms embodying rad score and clinical-pathologic data outperformed, showing good calibrations for predicting response to NAC. The combined nomogram predicting pCR showed the best performance with the AUC values of 0.97, 0.90 and 0.86 in the training, testing, and external validation cohorts respectively. The AUC values of another combined nomogram predicting significant remission: 0.98, 0.88 0.80 in the training, testing and external validation cohorts. DCA showed the comprehensive model nomogram obtained the most clinical benefit.
CONCLUSIONS
The combined nomogram could preoperatively predict significant remission or even pCR to NAC in breast cancer based on multiparametric MRI and clinical-pathologic data.
介绍
本研究评估了乳腺癌原发灶在多参数磁共振成像(MRI)中的表现,旨在建立和验证基于放射组学的列线图,以预测接受新辅助化疗(NAC)后乳腺癌患者的不同病理结局。
材料与方法
回顾性收集了 387 例局部晚期乳腺癌患者的资料,所有患者均接受 NAC 治疗,并在 NAC 前接受乳腺动态对比增强 MRI(DCE-MRI)检查。从多参数 MRI 的感兴趣区域(ROI)中提取放射组学特征,以建立 rad 评分。临床病理数据和影像学特征建立临床模型。综合模型的特征是 rad 评分、预测临床病理数据和影像学特征,最终以列线图的形式显示。根据手术标本的 Miller-Payne(MP)分级,患者被分为 2 组。第一种分组方法:将病理反应分级为Ⅳ∼Ⅴ的 181 例患者纳入显著缓解组,将病理反应分级为Ⅰ∼Ⅲ的 206 例患者纳入非显著缓解组。第二种分组方法:将病理完全缓解(pCR)的 117 例患者分为 pCR 组,将未达到 pCR 的 270 例患者分为非 pCR 组。从 2 组数据中创建 2 个联合列线图,用于预测对 NAC 的不同病理反应。接受者操作特征曲线(ROC)的曲线下面积(AUC)用于评估每个模型的性能。而决策曲线分析(DCA)和校准曲线用于评估列线图的临床应用价值。
结果
包含 rad 评分和临床病理数据的 2 个联合列线图表现更好,显示出对预测 NAC 反应的良好校准。预测 pCR 的联合列线图在训练、测试和外部验证队列中的 AUC 值分别为 0.97、0.90 和 0.86,表现最佳。预测显著缓解的另一个联合列线图的 AUC 值为:0.98、0.88 和 0.80,分别在训练、测试和外部验证队列中。DCA 显示综合模型列线图获得了最大的临床获益。
结论
基于多参数 MRI 和临床病理数据,联合列线图可术前预测乳腺癌对 NAC 的显著缓解甚至 pCR。