Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Int J Biometeorol. 2024 Jun;68(6):1213-1228. doi: 10.1007/s00484-024-02662-0. Epub 2024 Mar 27.
Crop simulation models are valuable tools for decision making regarding evaluation and crop improvement under different field conditions. CSM-CROPGRO model integrates genotype, environment and crop management portfolios to simulate growth, development and yield. Modeling the safflower response to varied climate regimes are needed to strengthen its productivity dynamics. The main objective of the study was to evaluate the performance of DSSAT-CSM-CROPGRO-Safflower (Version 4.8.2) under diverse climatic conditions. The model was calibrated using the field observations for phenology, biomass and safflower grain yield (SGY) of the year 2016-17. Estimation of genetic coefficients was performed using GLUE (Genetic Likelihood Uncertainty Estimation) program. Simulated results for days to flowering, maturity, biomass at flowering and maturity and SGY were predicted reasonably with good statistical indices. Model evaluation results elucidate phenological events with low root mean square error (6.32 and 6.52) and high d-index (0.95 and 0.96) for days to flowering and maturity respectively for all genotypes and climate conditions. Fair prediction of safflower biomass at flowering and maturity showed low RMSE (887.3 and 564.3 kg ha) and high d-index (0.67 and 0.93) for the studied genotypes across the environments. RMSE for validated safflower grain yield (101.8 kg ha) and d-index (0.95) depicted that model outperformed for all genotypes and growing conditions. Longer appropriate growing conditions at NARC-Islamabad took optimal duration to assimilate photosynthetic products lead to higher grain yield. Safflower resilience to different environments showed that it can be used as an alternate crop for different agroecological regions. Furthermore, CROPGRO-Safflower model can be used as tool to further evaluate inclusion of safflower in the existing cropping systems of studied regions.
作物模拟模型是在不同田间条件下评估和作物改良决策的有价值工具。CSM-CROPGRO 模型集成了基因型、环境和作物管理组合,以模拟生长、发育和产量。需要对不同气候制度下红花的响应进行建模,以加强其生产力动态。本研究的主要目的是在不同气候条件下评估 DSSAT-CSM-CROPGRO-红花(版本 4.8.2)的性能。使用 2016-17 年田间观测的物候、生物量和红花籽粒产量(SGY)对模型进行了校准。使用 GLUE(遗传似然不确定性估计)程序对遗传系数进行了估计。开花和成熟天数、开花和成熟生物量以及 SGY 的模拟结果预测合理,具有良好的统计指标。模型评估结果阐明了低均方根误差(6.32 和 6.52)和高 d 指数(0.95 和 0.96)的物候事件,分别用于所有基因型和气候条件下的开花和成熟天数。红花开花和成熟生物量的良好预测表明,在研究的基因型和环境下,低均方根误差(887.3 和 564.3kg/ha)和高 d 指数(0.67 和 0.93)。验证的红花籽粒产量(101.8kg/ha)的均方根误差和 d 指数(0.95)表明,该模型在所有基因型和生长条件下表现良好。NARC-伊斯兰堡的适宜生长条件较长,有足够的时间同化光合产物,从而导致更高的产量。红花对不同环境的适应能力表明,它可以作为不同农业生态区的替代作物。此外,CROPGRO-红花模型可用作工具,进一步评估在研究地区现有种植系统中纳入红花的情况。