Suppr超能文献

三阴性乳腺癌微环境的回顾性研究:利用公开的单细胞RNA测序数据集分析肿瘤相关成分的新型标志物、相互作用及机制

A Retrospective View of the Triple-Negative Breast Cancer Microenvironment: Novel Markers, Interactions, and Mechanisms of Tumor-Associated Components Using Public Single-Cell RNA-Seq Datasets.

作者信息

Kim Minsoo, Yang Wonhee, Hong Dawon, Won Hye Sung, Yoon Seokhyun

机构信息

Department of Computer Science, College of SW Convergence, Dankook University, Yongin 16890, Republic of Korea.

Department of AI-Based Convergence, College of SW Convergence, Dankook University, Yongin 16890, Republic of Korea.

出版信息

Cancers (Basel). 2024 Mar 16;16(6):1173. doi: 10.3390/cancers16061173.

Abstract

Triple-negative breast cancer (TNBC) is a significant clinical challenge due to its aggressive nature and limited treatment options. In search of new treatment targets, not only single genes but also gene pairs involved in protein interactions, we explored the tumor microenvironment (TME) of TNBC from a retrospective point of view, using public single-cell RNA sequencing datasets. A High-resolution Cell type Annotation Tool, HiCAT, was used first to identify the cell type in 3-level taxonomies. Tumor cells were then identified based on the estimates of copy number variation. With the annotation results, differentially expressed genes were analyzed to find subtype-specific markers for each cell type, including tumor cells, fibroblast, and macrophage. Cell-cell interactions were also inferred for each cell type pair. Through integrative analysis, we could find unique TNBC markers not only for tumor cells but also for various TME components, including fibroblasts and macrophages. Specifically, twelve marker genes, including and , were identified for TNBC tumor cells. Another key finding of our study was the interaction between the and genes among TNBC tumor cells, suggesting that they are more tightly aggregated with each other than those of other subtypes, including normal epithelial cells. The overexpression of in TNBC and its prognostic power were verified by using METABRIC, a large bulk RNA-seq dataset with clinical information. These findings not only corroborate previous hypotheses but also lay the foundation for a new structural understanding of TNBC, as revealed through our single-cell analysis workflow.

摘要

三阴性乳腺癌(TNBC)因其侵袭性本质和有限的治疗选择而成为一项重大的临床挑战。为了寻找新的治疗靶点,我们不仅关注单个基因,还关注参与蛋白质相互作用的基因对,利用公开的单细胞RNA测序数据集,从回顾性角度探索了TNBC的肿瘤微环境(TME)。首先使用一种高分辨率细胞类型注释工具HiCAT在三级分类法中识别细胞类型。然后根据拷贝数变异估计来识别肿瘤细胞。根据注释结果,分析差异表达基因以找到每种细胞类型(包括肿瘤细胞、成纤维细胞和巨噬细胞)的亚型特异性标志物。还推断了每种细胞类型对之间的细胞-细胞相互作用。通过综合分析,我们不仅可以找到TNBC肿瘤细胞的独特标志物,还可以找到包括成纤维细胞和巨噬细胞在内的各种TME成分的独特标志物。具体而言,为TNBC肿瘤细胞鉴定了12个标志物基因,包括[具体基因1]和[具体基因2]。我们研究的另一个关键发现是TNBC肿瘤细胞中[基因3]和[基因4]之间的相互作用,这表明它们彼此之间的聚集比其他亚型(包括正常上皮细胞)更为紧密。通过使用METABRIC(一个带有临床信息的大型批量RNA测序数据集)验证了[基因5]在TNBC中的过表达及其预后能力。这些发现不仅证实了先前的假设,还为通过我们的单细胞分析工作流程揭示的TNBC的新结构理解奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc98/10969223/825b5aea4d05/cancers-16-01173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验