Yang Lin
Joint Laboratory of Data Science and Business Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China.
Entropy (Basel). 2024 Mar 1;26(3):226. doi: 10.3390/e26030226.
We propose a two-sample testing procedure for high-dimensional time series. To obtain the asymptotic distribution of our ℓ∞-type test statistic under the null hypothesis, we establish high-dimensional central limit theorems (HCLTs) for an α-mixing sequence. Specifically, we derive two HCLTs for the maximum of a sum of high-dimensional α-mixing random vectors under the assumptions of bounded finite moments and exponential tails, respectively. The proposed HCLT for α-mixing sequence under bounded finite moments assumption is novel, and in comparison with existing results, we improve the convergence rate of the HCLT under the exponential tails assumption. To compute the critical value, we employ the blockwise bootstrap method. Importantly, our approach does not require the independence of the two samples, making it applicable for detecting change points in high-dimensional time series. Numerical results emphasize the effectiveness and advantages of our method.
我们提出了一种用于高维时间序列的两样本检验程序。为了在原假设下获得我们的ℓ∞型检验统计量的渐近分布,我们为α混合序列建立了高维中心极限定理(HCLTs)。具体而言,我们分别在有界有限矩和指数尾部的假设下,推导了高维α混合随机向量之和的最大值的两个HCLTs。在有界有限矩假设下提出的α混合序列的HCLT是新颖的,并且与现有结果相比,我们提高了指数尾部假设下HCLT的收敛速度。为了计算临界值,我们采用分块自助法。重要的是,我们的方法不需要两个样本相互独立,这使得它适用于检测高维时间序列中的变化点。数值结果强调了我们方法的有效性和优势。