Yu Yuan
School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, China.
Entropy (Basel). 2024 Mar 6;26(3):232. doi: 10.3390/e26030232.
For a family of stochastic differential equations driven by additive Gaussian noise, we study the asymptotic behaviors of its corresponding Euler-Maruyama scheme by deriving its convergence rate in terms of relative entropy. Our results for the convergence rate in terms of relative entropy complement the conventional ones in the strong and weak sense and induce some other properties of the Euler-Maruyama scheme. For example, the convergence in terms of the total variation distance can be implied by Pinsker's inequality directly. Moreover, when the drift is β(0<β<1)-Hölder continuous in the spatial variable, the convergence rate in terms of the weighted variation distance is also established. Both of these convergence results do not seem to be directly obtained from any other convergence results of the Euler-Maruyama scheme. The main tool this paper relies on is the Girsanov transform.
对于由加性高斯噪声驱动的一族随机微分方程,我们通过推导其相对熵意义下的收敛速度来研究相应的欧拉-丸山格式的渐近行为。我们关于相对熵意义下收敛速度的结果补充了传统的强收敛和弱收敛结果,并引出了欧拉-丸山格式的一些其他性质。例如,全变差距离意义下的收敛可由平斯克不等式直接推出。此外,当漂移项在空间变量上是β(0<β<1)-赫尔德连续时,还建立了加权变差距离意义下的收敛速度。这两个收敛结果似乎都不能直接从欧拉-丸山格式的任何其他收敛结果中得到。本文所依赖的主要工具是吉尔萨诺夫变换。