Suppr超能文献

欧拉-丸山格式相对熵向带加性噪声的随机微分方程的收敛性。

Convergence of Relative Entropy for Euler-Maruyama Scheme to Stochastic Differential Equations with Additive Noise.

作者信息

Yu Yuan

机构信息

School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, China.

出版信息

Entropy (Basel). 2024 Mar 6;26(3):232. doi: 10.3390/e26030232.

Abstract

For a family of stochastic differential equations driven by additive Gaussian noise, we study the asymptotic behaviors of its corresponding Euler-Maruyama scheme by deriving its convergence rate in terms of relative entropy. Our results for the convergence rate in terms of relative entropy complement the conventional ones in the strong and weak sense and induce some other properties of the Euler-Maruyama scheme. For example, the convergence in terms of the total variation distance can be implied by Pinsker's inequality directly. Moreover, when the drift is β(0<β<1)-Hölder continuous in the spatial variable, the convergence rate in terms of the weighted variation distance is also established. Both of these convergence results do not seem to be directly obtained from any other convergence results of the Euler-Maruyama scheme. The main tool this paper relies on is the Girsanov transform.

摘要

对于由加性高斯噪声驱动的一族随机微分方程,我们通过推导其相对熵意义下的收敛速度来研究相应的欧拉-丸山格式的渐近行为。我们关于相对熵意义下收敛速度的结果补充了传统的强收敛和弱收敛结果,并引出了欧拉-丸山格式的一些其他性质。例如,全变差距离意义下的收敛可由平斯克不等式直接推出。此外,当漂移项在空间变量上是β(0<β<1)-赫尔德连续时,还建立了加权变差距离意义下的收敛速度。这两个收敛结果似乎都不能直接从欧拉-丸山格式的任何其他收敛结果中得到。本文所依赖的主要工具是吉尔萨诺夫变换。

相似文献

3
Approximation of SDEs: a stochastic sewing approach.随机微分方程的逼近:一种随机缝合方法。
Probab Theory Relat Fields. 2021;181(4):975-1034. doi: 10.1007/s00440-021-01080-2. Epub 2021 Jul 30.
9
Analysis of stability for stochastic delay integro-differential equations.随机延迟积分微分方程的稳定性分析
J Inequal Appl. 2018;2018(1):114. doi: 10.1186/s13660-018-1702-2. Epub 2018 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验