Suppr超能文献

HAG-NET:利用生成对抗网络隐藏数据与对抗攻击

HAG-NET: Hiding Data and Adversarial Attacking with Generative Adversarial Network.

作者信息

Fan Haiju, Wang Jinsong

机构信息

College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China.

出版信息

Entropy (Basel). 2024 Mar 19;26(3):269. doi: 10.3390/e26030269.

Abstract

Recent studies on watermarking techniques based on image carriers have demonstrated new approaches that combine adversarial perturbations against steganalysis with embedding distortions. However, while these methods successfully counter convolutional neural network-based steganalysis, they do not adequately protect the data of the carrier itself. Recognizing the high sensitivity of Deep Neural Networks (DNNs) to small perturbations, we propose HAG-NET, a method based on image carriers, which is jointly trained by the encoder, decoder, and attacker. In this paper, the encoder generates Adversarial Steganographic Examples (ASEs) that are adversarial to the target classification network, thereby providing protection for the carrier data. Additionally, the decoder can recover secret data from ASEs. The experimental results demonstrate that ASEs produced by HAG-NET achieve an average success rate of over 99% on both the MNIST and CIFAR-10 datasets. ASEs generated with the attacker exhibit greater robustness in terms of attack ability, with an average increase of about 3.32%. Furthermore, our method, when compared with other generative stego examples under similar perturbation strength, contains significantly more information according to image information entropy measurements.

摘要

最近关于基于图像载体的水印技术的研究展示了一些新方法,这些方法将针对隐写分析的对抗性扰动与嵌入失真相结合。然而,虽然这些方法成功地对抗了基于卷积神经网络的隐写分析,但它们并没有充分保护载体本身的数据。鉴于深度神经网络(DNN)对微小扰动的高度敏感性,我们提出了HAG-NET,一种基于图像载体的方法,它由编码器、解码器和攻击者联合训练。在本文中,编码器生成对目标分类网络具有对抗性的对抗性隐写示例(ASE),从而为载体数据提供保护。此外,解码器可以从ASE中恢复秘密数据。实验结果表明,HAG-NET生成的ASE在MNIST和CIFAR-10数据集上的平均成功率均超过99%。由攻击者生成的ASE在攻击能力方面表现出更强的鲁棒性,平均提高约3.32%。此外,根据图像信息熵测量,与在相似扰动强度下的其他生成性隐写示例相比,我们的方法包含的信息显著更多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24df/10969518/a40d6893f99a/entropy-26-00269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验