Suppr超能文献

考虑粒径分布的基于颗粒的辐射冷却薄膜的冷却性能预测

Cooling Performance Prediction of Particle-Based Radiative Cooling Film Considering Particle Size Distribution.

作者信息

Lim Jaehyun, Jung Junbo, Rho Jinsung, Kim Joong Bae

机构信息

Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea.

Department of Mechanical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.

出版信息

Micromachines (Basel). 2024 Feb 21;15(3):292. doi: 10.3390/mi15030292.

Abstract

Here, we present a novel protocol concept for quantifying the cooling performance of particle-based radiative cooling (PBRC). PBRC, known for its high flexibility and scalability, emerges as a promising method for practical applications. The cooling power, one of the cooling performance indexes, is the typical quantitative performance index, representing its cooling capability at the surface. One of the primary obstacles to predicting cooling power is the difficulty of simulating the non-uniform size and shape of micro-nanoparticles in the PBRC film. The present work aims to develop an accurate protocol for predicting the cooling power of PBRC film using image processing and regression analysis techniques. Specifically, the protocol considers the particle size distribution through circle object detection on SEM images and determines the probability density function based on a chi-square test. To validate the proposed protocol, a PBRC structure with PDMS/AlO micro-nanoparticles is fabricated, and the proposed protocol precisely predicts the measured cooling power with a 7.8% error. Through this validation, the proposed protocol proves its potential and reliability for the design of PBRC.

摘要

在此,我们提出了一种用于量化基于粒子的辐射冷却(PBRC)冷却性能的新型协议概念。PBRC以其高灵活性和可扩展性而闻名,是一种很有前景的实际应用方法。冷却功率作为冷却性能指标之一,是典型的定量性能指标,代表其在表面的冷却能力。预测冷却功率的主要障碍之一是难以模拟PBRC薄膜中微纳米颗粒的不均匀尺寸和形状。目前的工作旨在开发一种使用图像处理和回归分析技术预测PBRC薄膜冷却功率的准确协议。具体而言,该协议通过在扫描电子显微镜(SEM)图像上进行圆形物体检测来考虑颗粒尺寸分布,并基于卡方检验确定概率密度函数。为了验证所提出的协议,制备了具有聚二甲基硅氧烷/氧化铝(PDMS/AlO)微纳米颗粒的PBRC结构,并且所提出的协议以7.8%的误差精确预测了测量的冷却功率。通过此验证,所提出的协议证明了其在PBRC设计中的潜力和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d81/10972170/2e63f9a8c0fb/micromachines-15-00292-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验