Suppr超能文献

用于快速微流控芯片实验室制造的收缩膜特性表征

Characterization of Shrink Film Properties for Rapid Microfluidics Lab-on-Chip Fabrication.

作者信息

Kong Tian Fook, Ang Alger Wai Jiat

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

出版信息

Micromachines (Basel). 2024 Feb 23;15(3):308. doi: 10.3390/mi15030308.

Abstract

Shrink film is a thin sheet of polystyrene plastic that shrinks to 25-40% of its original size when heated. This study investigated the shrinkage factor of the film at different temperatures and baking times to determine the optimal fabrication recipe for shrink film microfluidic device production. Additionally, this study characterized the properties of shrink film, including minimum possible feature size and cross-section geometries, using manual engraving and the CAMEO 4 automated cutting machine. The optimal shrinkage factor ranged from 1.7 to 2.9 at 150 °C and a baking time of 4 min, producing the ideal size for microfluidic device fabrication. The X- and Y-axes shrank ~2.5 times, while Z-axis thickened by a factor of ~5.8 times. This study achieved a minimum feature size of 200 microns, limited by the collapsing of channel sidewalls when shrunk, leading to blockages in the microchannel. These findings demonstrate the feasibility and versatility of using shrink film as a cost-effective and efficient material for the rapid fabrication of microfluidic devices. The potential applications of this material in various fields such as the medical and biomedical industries, bacteria and algae culture and enumeration are noteworthy.

摘要

收缩膜是一种聚苯乙烯塑料薄片,加热时会收缩至其原始尺寸的25%至40%。本研究调查了该薄膜在不同温度和烘烤时间下的收缩系数,以确定用于生产收缩膜微流控装置的最佳制造配方。此外,本研究使用手动雕刻和CAMEO 4自动切割机对收缩膜的特性进行了表征,包括最小可能特征尺寸和横截面几何形状。在150°C和4分钟的烘烤时间下,最佳收缩系数范围为1.7至2.9,产生了微流控装置制造的理想尺寸。X轴和Y轴收缩了约2.5倍,而Z轴增厚了约5.8倍。本研究实现了200微米的最小特征尺寸,这受到收缩时通道侧壁塌陷的限制,导致微通道堵塞。这些发现证明了使用收缩膜作为一种经济高效的材料快速制造微流控装置的可行性和多功能性。这种材料在医疗和生物医学行业、细菌和藻类培养与计数等各个领域的潜在应用值得关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a70a/10971817/3e0bd1a0ba7d/micromachines-15-00308-g001.jpg

相似文献

1
Characterization of Shrink Film Properties for Rapid Microfluidics Lab-on-Chip Fabrication.
Micromachines (Basel). 2024 Feb 23;15(3):308. doi: 10.3390/mi15030308.
3
A low cost solution for the fabrication of dielectrophoretic microfluidic devices and embedded electrodes.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8384-7. doi: 10.1109/IEMBS.2011.6092068.
4
Fabrication of Transparent and Flexible Digital Microfluidics Devices.
Micromachines (Basel). 2022 Mar 23;13(4):498. doi: 10.3390/mi13040498.
5
Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching.
Materials (Basel). 2016 Mar 14;9(3):196. doi: 10.3390/ma9030196.
9
Demonstration of a Transparent and Adhesive Sealing Top for Microfluidic Lab-Chip Applications.
Sensors (Basel). 2024 Mar 11;24(6):1797. doi: 10.3390/s24061797.
10
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
PLoS One. 2021 Feb 3;16(2):e0245206. doi: 10.1371/journal.pone.0245206. eCollection 2021.

本文引用的文献

1
An automated and intelligent microfluidic platform for microalgae detection and monitoring.
Lab Chip. 2024 Jan 17;24(2):244-253. doi: 10.1039/d3lc00851g.
2
Deformability-Based Isolation of Circulating Tumor Cells in Spiral Microchannels.
Micromachines (Basel). 2023 Nov 17;14(11):2111. doi: 10.3390/mi14112111.
6
A Narrow Straight Microchannel Array for Analysis of Transiting Speed of Floating Cancer Cells.
Micromachines (Basel). 2022 Jan 26;13(2):183. doi: 10.3390/mi13020183.
7
9
Bacteria and cancer cell pearl chain under dielectrophoresis.
Electrophoresis. 2021 May;42(9-10):1070-1078. doi: 10.1002/elps.202000277. Epub 2021 Feb 5.
10
Dielectrophoretic trapping and impedance detection of , , and bacteria.
Biomicrofluidics. 2020 Oct 14;14(5):054105. doi: 10.1063/5.0024826. eCollection 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验