Nokes Jolie M, Sharma Himanshu, Tu Roger, Kim Monica Y, Chu Michael, Siddiqui Ali, Khine Michelle
Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine; Irvine, CA 92697, USA.
Department of Chemical Engineering and Material Sciences, Samueli School of Engineering, University of California, Irvine; Irvine, CA 92697, USA.
Materials (Basel). 2016 Mar 14;9(3):196. doi: 10.3390/ma9030196.
We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.
我们展示了一种快速、简单且可扩展的方法,利用氩(Ar)等离子体直接在商用收缩包装膜中实现超疏水(SH)基底。Ar等离子体处理在收缩膜表面形成一层坚硬的皮层。当薄膜收缩时,坚硬皮层与本体收缩膜之间的硬度不匹配会导致形成具有纳米纹理特征的多尺度分级皱纹。扫描电子显微镜(SEM)图像证实了这些仿生结构的存在。接触角(CA)和接触角滞后(CAH)测量(分别定义为大于150°和小于10°的值)验证了基底的超疏水性质。此外,我们展示了在SH基底上可靠地图案化亲水区的能力,从而能够精确捕获和检测尿液中的蛋白质。最后,我们通过在SH Ar基底上图案化对比鲜明的超亲水性微通道以诱导流动用于生物传感,实现了自驱动微流体。