Suppr超能文献

用于有效尿素电化学氧化和水分解应用的改性镍铁氧化物负载氧化石墨烯

Modified NiFeO-Supported Graphene Oxide for Effective Urea Electrochemical Oxidation and Water Splitting Applications.

作者信息

Alamro Fowzia S, Medany Shymaa S, Al-Kadhi Nada S, Ahmed Hoda A, Hefnawy Mahmoud A

机构信息

Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.

出版信息

Molecules. 2024 Mar 8;29(6):1215. doi: 10.3390/molecules29061215.

Abstract

The production of green hydrogen using water electrolysis is widely regarded as one of the most promising technologies. On the other hand, the oxygen evolution reaction (OER) is thermodynamically unfavorable and needs significant overpotential to proceed at a sufficient rate. Here, we outline important structural and chemical factors that affect how well a representative nickel ferrite-modified graphene oxide electrocatalyst performs in efficient water splitting applications. The activities of the modified pristine and graphene oxide-supported nickel ferrite were thoroughly characterized in terms of their structural, morphological, and electrochemical properties. This research shows that the NiFeO@GO electrode has an impact on both the urea oxidation reaction (UOR) and water splitting applications. NiFeO@GO was observed to have a current density of 26.6 mA cm in 1.0 M urea and 1.0 M KOH at a scan rate of 20 mV s. The Tafel slope provided for UOR was 39 mV dec, whereas the GC/NiFeO@GO electrode reached a current of 10 mA cm at potentials of +1.5 and -0.21 V (vs. RHE) for the OER and hydrogen evolution reaction (HER), respectively. Furthermore, charge transfer resistances were estimated for OER and HER as 133 and 347 Ω cm, respectively.

摘要

利用水电解生产绿色氢能被广泛认为是最具前景的技术之一。另一方面,析氧反应(OER)在热力学上是不利的,需要显著的过电位才能以足够的速率进行。在此,我们概述了影响代表性镍铁氧体修饰氧化石墨烯电催化剂在高效水分解应用中性能的重要结构和化学因素。从结构、形态和电化学性质方面对修饰的原始镍铁氧体和氧化石墨烯负载的镍铁氧体的活性进行了全面表征。这项研究表明,NiFeO@GO电极对尿素氧化反应(UOR)和水分解应用都有影响。在1.0 M尿素和1.0 M KOH中,扫描速率为20 mV s时,观察到NiFeO@GO的电流密度为26.6 mA cm。UOR的塔菲尔斜率为39 mV dec,而GC/NiFeO@GO电极在析氧反应(OER)和析氢反应(HER)的电位分别为+1.5和 -0.21 V(相对于可逆氢电极,RHE)时达到10 mA cm的电流。此外,OER和HER的电荷转移电阻分别估计为133和347 Ω cm。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cf/10974038/a3a9df96eb5a/molecules-29-01215-g001.jpg

相似文献

2
NiFeO Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26283-26292. doi: 10.1021/acsami.8b07835. Epub 2018 Jul 25.
4
The polyoxometalates mediated preparation of phosphate-modified NiMoO with abundant O-vacancies for H production via urea electrolysis.
J Colloid Interface Sci. 2023 Jan;629(Pt A):297-309. doi: 10.1016/j.jcis.2022.08.145. Epub 2022 Aug 27.
7
Novel trifunctional electrocatalyst of nickel foam supported CoP/NiMoO heterostructures for overall water splitting and urea oxidation.
J Colloid Interface Sci. 2023 Oct 15;648:278-286. doi: 10.1016/j.jcis.2023.05.184. Epub 2023 Jun 2.
9
PEO-PPO-PEO induced holey NiFe-LDH nanosheets on Ni foam for efficient overall water-splitting and urea electrolysis.
J Colloid Interface Sci. 2022 Jul 15;618:141-148. doi: 10.1016/j.jcis.2022.03.072. Epub 2022 Mar 18.
10
Spinel NiFeO nanoparticles decorated 2D TiC MXene sheets for efficient water splitting: Experiments and theories.
J Colloid Interface Sci. 2021 Nov 15;602:232-241. doi: 10.1016/j.jcis.2021.06.007. Epub 2021 Jun 6.

引用本文的文献

1
Synthesis of NiCoO supported on Chitosan for potential adsorption of copper ions in water samples.
Sci Rep. 2025 Apr 24;15(1):14402. doi: 10.1038/s41598-025-96777-y.
2
Synthesis of spinel Nickel Ferrite (NiFeO)/CNT electrocatalyst for ethylene glycol oxidation in alkaline medium.
Heliyon. 2024 Aug 3;10(16):e35791. doi: 10.1016/j.heliyon.2024.e35791. eCollection 2024 Aug 30.
3
Synthesis of nickel-sphere coated Ni-Mn layer for efficient electrochemical detection of urea.
Sci Rep. 2024 Jun 27;14(1):14818. doi: 10.1038/s41598-024-64707-z.

本文引用的文献

3
Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids.
Adv Mater. 2023 Dec;35(49):e2211884. doi: 10.1002/adma.202211884. Epub 2023 Oct 29.
4
Zinc Nanocomposite Supported Chitosan for Nitrite Sensing and Hydrogen Evolution Applications.
Polymers (Basel). 2023 May 18;15(10):2357. doi: 10.3390/polym15102357.
7
Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review.
Adv Sci (Weinh). 2022 Jun;9(18):e2200307. doi: 10.1002/advs.202200307. Epub 2022 Apr 18.
8
Water Splitting: From Electrode to Green Energy System.
Nanomicro Lett. 2020 Jun 17;12(1):131. doi: 10.1007/s40820-020-00469-3.
9
Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
Adv Mater. 2021 Apr;33(17):e2006042. doi: 10.1002/adma.202006042. Epub 2021 Mar 22.
10
Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction.
Adv Mater. 2021 Dec;33(50):e2004243. doi: 10.1002/adma.202004243. Epub 2021 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验