Suppr超能文献

基于声学图像的水下救援目标检测

Underwater Rescue Target Detection Based on Acoustic Images.

作者信息

Hu Sufeng, Liu Tao

机构信息

School of Instrument Science and Engineering, Southeast University, Nanjing 210000, China.

China Special Equipment Testing and Research Institute, Beijing 100000, China.

出版信息

Sensors (Basel). 2024 Mar 10;24(6):1780. doi: 10.3390/s24061780.

Abstract

In order to effectively respond to floods and water emergencies that result in the drowning of missing persons, timely and effective search and rescue is a very critical step in underwater rescue. Due to the complex underwater environment and low visibility, unmanned underwater vehicles (UUVs) with sonar are more efficient than traditional manual search and rescue methods to conduct active searches using deep learning algorithms. In this paper, we constructed a sound-based rescue target dataset that encompasses both the source and target domains using deep transfer learning techniques. For the underwater acoustic rescue target detection of small targets, which lack image feature accuracy, this paper proposes a two-branch convolution module and improves the YOLOv5s algorithm model to design an acoustic rescue small target detection algorithm model. For an underwater rescue target dataset based on acoustic images with a small sample acoustic dataset, a direct fine-tuning using optical image pre-training lacks cross-domain adaptability due to the different statistical properties of optical and acoustic images. This paper therefore proposes a heterogeneous information hierarchical migration learning method. For the false detection of acoustic rescue targets in a complex underwater background, the network layer is frozen during the hierarchical migration of heterogeneous information to improve the detection accuracy. In addition, in order to be more applicable to the embedded devices carried by underwater UAVs, an underwater acoustic rescue target detection algorithm based on ShuffleNetv2 is proposed to improve the two-branch convolutional module and the backbone network of YOLOv5s algorithm, and to create a lightweight model based on hierarchical migration of heterogeneous information. Through extensive comparative experiments conducted on various acoustic images, we have thoroughly validated the feasibility and effectiveness of our method. Our approach has demonstrated state-of-the-art performance in underwater search and rescue target detection tasks.

摘要

为有效应对导致失踪人员溺水的洪水和水患紧急情况,及时有效的搜索救援是水下救援中非常关键的一步。由于水下环境复杂且能见度低,配备声纳的无人水下航行器(UUV)使用深度学习算法进行主动搜索比传统人工搜索救援方法更高效。在本文中,我们使用深度迁移学习技术构建了一个涵盖源域和目标域的基于声音的救援目标数据集。针对缺乏图像特征准确性的水下声学救援小目标检测,本文提出了一种双分支卷积模块,并改进了YOLOv5s算法模型,设计了一种声学救援小目标检测算法模型。对于基于声学图像且声学数据集样本较少的水下救援目标数据集,由于光学图像和声学图像的统计特性不同,直接使用光学图像预训练进行微调缺乏跨域适应性。因此,本文提出了一种异构信息分层迁移学习方法。针对复杂水下背景下声学救援目标的误检问题,在异构信息分层迁移过程中冻结网络层以提高检测精度。此外,为了更适用于水下无人机携带的嵌入式设备,提出了一种基于ShuffleNetv2的水下声学救援目标检测算法,对双分支卷积模块和YOLOv5s算法的主干网络进行改进,并基于异构信息分层迁移创建轻量级模型。通过对各种声学图像进行广泛的对比实验,我们充分验证了我们方法的可行性和有效性。我们的方法在水下搜索救援目标检测任务中展现出了领先的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3c9/10974114/4aeddc659b40/sensors-24-01780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验