Suppr超能文献

水下声学目标识别中联合模型的少样本学习

Few-shot learning for joint model in underwater acoustic target recognition.

作者信息

Tian Shengzhao, Bai Di, Zhou Junlin, Fu Yan, Chen Duanbing

机构信息

Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Suining Municipal Government Services and Big Data Administration, Suining, 629018, China.

出版信息

Sci Rep. 2023 Oct 16;13(1):17502. doi: 10.1038/s41598-023-44641-2.

Abstract

In underwater acoustic target recognition, there is a lack of massive high-quality labeled samples to train robust deep neural networks, and it is difficult to collect and annotate a large amount of base class data in advance unlike the image recognition field. Therefore, conventional few-shot learning methods are difficult to apply in underwater acoustic target recognition. In this report, following advanced self-supervised learning frameworks, a learning framework for underwater acoustic target recognition model with few samples is proposed. Meanwhile, a semi-supervised fine-tuning method is proposed to improve the fine-tuning performance by mining and labeling partial unlabeled samples based on the similarity of deep features. A set of small sample datasets with different amounts of labeled data are constructed, and the performance baselines of four underwater acoustic target recognition models are established based on these datasets. Compared with the baselines, using the proposed framework effectively improves the recognition effect of four models. Especially for the joint model, the recognition accuracy has increased by 2.04% to 12.14% compared with the baselines. The model performance on only 10 percent of the labeled data can exceed that on the full dataset, effectively reducing the dependence of model on the number of labeled samples. The problem of lack of labeled samples in underwater acoustic target recognition is alleviated.

摘要

在水下声学目标识别中,缺乏大量高质量的标注样本用于训练鲁棒的深度神经网络,并且与图像识别领域不同,很难提前收集和标注大量的基类数据。因此,传统的少样本学习方法难以应用于水下声学目标识别。在本报告中,遵循先进的自监督学习框架,提出了一种用于少样本水下声学目标识别模型的学习框架。同时,提出了一种半监督微调方法,通过基于深度特征的相似性挖掘和标注部分未标注样本,来提高微调性能。构建了一组具有不同数量标注数据的小样本数据集,并基于这些数据集建立了四种水下声学目标识别模型的性能基线。与基线相比,使用所提出的框架有效提高了四种模型的识别效果。特别是对于联合模型,与基线相比,识别准确率提高了2.04%至12.14%。仅使用10%标注数据时模型的性能就能超过在完整数据集上的性能,有效降低了模型对标注样本数量的依赖。水下声学目标识别中缺乏标注样本的问题得到了缓解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a72/10579255/a104242c3747/41598_2023_44641_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验