通过多尺度熵分析探索虚拟现实中的眼动动力学。

Exploring Gaze Dynamics in Virtual Reality through Multiscale Entropy Analysis.

机构信息

Department of Architecture, Texas A&M University, College Station, TX 77843, USA.

出版信息

Sensors (Basel). 2024 Mar 10;24(6):1781. doi: 10.3390/s24061781.

Abstract

This study employs Multiscale Entropy (MSE) to analyze 5020 binocular eye movement recordings from 407 college-aged participants, as part of the GazeBaseVR dataset, across various virtual reality (VR) tasks to understand the complexity of user interactions. By evaluating the vertical and horizontal components of eye movements across tasks such as vergence, smooth pursuit, video viewing, reading, and random saccade, collected at 250 Hz using an ET-enabled VR headset, this research provides insights into the predictability and complexity of gaze patterns. Participants were recorded up to six times over a 26-month period, offering a longitudinal perspective on eye movement behavior in VR. MSE's application in this context aims to offer a deeper understanding of user behavior in VR, highlighting potential avenues for interface optimization and user experience enhancement. The results suggest that MSE can be a valuable tool in creating more intuitive and immersive VR environments by adapting to users' gaze behaviors. This paper discusses the implications of these findings for the future of VR technology development, emphasizing the need for intuitive design and the potential for MSE to contribute to more personalized and comfortable VR experiences.

摘要

这项研究运用多尺度熵(MSE)分析了来自 407 名大学生的 5020 对双眼眼球运动记录,这些记录来自 GazeBaseVR 数据集,涵盖了各种虚拟现实(VR)任务,旨在了解用户交互的复杂性。通过评估在使用 ET 功能的 VR 头戴设备以 250Hz 的频率采集的诸如辐辏、平滑追踪、视频观看、阅读和随机扫视等任务中眼球运动的垂直和水平分量,本研究深入探讨了注视模式的可预测性和复杂性。参与者在 26 个月的时间里被记录了多达六次,提供了对 VR 中眼球运动行为的纵向观察。MSE 在这种情况下的应用旨在通过适应用户的注视行为,提供对 VR 中用户行为的更深入理解,突出了界面优化和用户体验增强的潜在途径。研究结果表明,MSE 可以通过适应用户的注视行为,成为创建更直观、更具沉浸感的 VR 环境的有价值工具。本文讨论了这些发现对 VR 技术发展未来的影响,强调了直观设计的必要性以及 MSE 对更个性化和舒适的 VR 体验的潜在贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8c/10975790/d87c9225d81b/sensors-24-01781-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索