Suppr超能文献

一种用于肺腺癌预后预测的新型甲基化模型。

A Novel Methylation-based Model for Prognostic Prediction in Lung Adenocarcinoma.

作者信息

Li Manyuan, Deng Xufeng, Zhou Dong, Liu Xiaoqing, Dai Jigang, Liu Quanxing

机构信息

Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.

出版信息

Curr Genomics. 2024 Feb 23;25(1):26-40. doi: 10.2174/0113892029277397231228062412.

Abstract

OBJECTIVES

Specific methylation sites have shown promise in the early diagnosis of lung adenocarcinoma (LUAD). However, their utility in predicting LUAD prognosis remains unclear. This study aimed to construct a reliable methylation-based predictor for accurately predicting the prognosis of LUAD patients.

METHODS

DNA methylation data and survival data from LUAD patients were obtained from the TCGA and a GEO series. A DNA methylation-based signature was developed using univariate least absolute shrinkage and selection operators and multivariate Cox regression models.

RESULTS

Eight CpG sites were identified and validated as optimal prognostic signatures for the overall survival of LUAD patients. Receiver operating characteristic analysis demonstrated the high predictive ability of the eight-site methylation signature combined with clinical factors for overall survival.

CONCLUSION

This research successfully identified a novel eight-site methylation signature for predicting the overall survival of LUAD patients through bioinformatic integrated analysis of gene methylation markers used in the early diagnosis of lung cancer.

摘要

目的

特定的甲基化位点在肺腺癌(LUAD)的早期诊断中显示出前景。然而,它们在预测LUAD预后方面的效用仍不明确。本研究旨在构建一个基于甲基化的可靠预测模型,以准确预测LUAD患者的预后。

方法

从TCGA和一个GEO系列中获取LUAD患者的DNA甲基化数据和生存数据。使用单变量最小绝对收缩和选择算子以及多变量Cox回归模型开发了一种基于DNA甲基化的特征。

结果

八个CpG位点被鉴定并验证为LUAD患者总生存的最佳预后特征。受试者工作特征分析表明,结合临床因素的八位点甲基化特征对总生存具有较高的预测能力。

结论

本研究通过对肺癌早期诊断中使用的基因甲基化标志物进行生物信息学综合分析,成功鉴定出一种用于预测LUAD患者总生存的新型八位点甲基化特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb9e/10964088/b688b587dcf9/CG-25-26_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验