文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离子液体包被的脂质纳米颗粒可增加小干扰RNA对中枢神经系统靶点的摄取。

Ionic liquid-coated lipid nanoparticles increase siRNA uptake into CNS targets.

作者信息

Khare Purva, Edgecomb Sara X, Hamadani Christine M, Conway James F, Tanner Eden E L, S Manickam Devika

机构信息

Graduate School of Pharmaceutical Sciences, Duquesne University 600 Forbes Avenue, 453 Mellon Hall Pittsburgh PA 15282 USA

Department of Chemistry and Biochemistry, The University of Mississippi MS USA.

出版信息

Nanoscale Adv. 2023 Dec 5;6(7):1853-1873. doi: 10.1039/d3na00699a. eCollection 2024 Mar 26.


DOI:10.1039/d3na00699a
PMID:38545295
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10964764/
Abstract

Lipidoid nanoparticles (LNPs) have transformed the field of drug delivery and are clinically used for the delivery of nucleic acids to liver and muscle targets. Post-intravenous administration, LNPs are naturally directed to the liver due to the adsorption of plasma proteins like apolipoprotein E. In the present work, we have re-engineered LNPs with ionic liquids (ILs) to reduce plasma protein adsorption and potentially increase the accumulation of LNPs in hard-to-deliver central nervous system (CNS) targets such as brain endothelial cells (BECs) and neurons. We have developed two approaches to re-engineer LNPs using a choline -2-hexenoate IL: first, we have optimized an IL-coating process using the standard LNP formulation and in the second approach, we have incorporated ILs into the LNPs by replacing the PEG-lipid component in the standard formulation using ILs. IL-coated as well as IL-incorporated LNPs were colloidally stable with morphologies similar to the standard LNPs. IL-coated LNPs showed superior uptake into mouse BECs and neurons and demonstrated reduced mouse plasma protein adsorption compared to the standard LNPs. Overall, our results (1) demonstrate the feasibility of re-engineering the clinically approved LNP platform with highly tunable biomaterials like ILs for the delivery of therapeutics to CNS targets like BECs and neurons and (2) suggest that the surface properties of LNPs play a critical role in altering their affinity to and uptake into hard-to-deliver cell types.

摘要

类脂纳米颗粒(LNPs)已经改变了药物递送领域,并在临床上用于将核酸递送至肝脏和肌肉靶点。静脉注射后,由于载脂蛋白E等血浆蛋白的吸附作用,LNPs会自然地被导向肝脏。在本研究中,我们用离子液体(ILs)对LNPs进行了重新设计,以减少血浆蛋白吸附,并有可能增加LNPs在难以递送的中枢神经系统(CNS)靶点(如脑内皮细胞(BECs)和神经元)中的积累。我们开发了两种使用胆碱-2-己烯酸离子液体重新设计LNPs的方法:第一,我们使用标准的LNP配方优化了离子液体涂层工艺;在第二种方法中,我们通过用离子液体取代标准配方中的聚乙二醇脂质成分,将离子液体掺入LNPs中。离子液体涂层和掺入离子液体的LNPs在胶体上是稳定的,其形态与标准LNPs相似。与标准LNPs相比,离子液体涂层的LNPs在小鼠BECs和神经元中的摄取效果更好,并且血浆蛋白吸附减少。总体而言,我们的结果(1)证明了用离子液体等高度可调的生物材料对临床批准的LNP平台进行重新设计,以将治疗药物递送至BECs和神经元等CNS靶点的可行性,(2)表明LNPs的表面性质在改变其对难以递送的细胞类型的亲和力和摄取方面起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/daafd9b70571/d3na00699a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/c359286f6b98/d3na00699a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/f775ecbcb1cc/d3na00699a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/fbdb48f89eed/d3na00699a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/2680f28fe561/d3na00699a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/b7559ba721c5/d3na00699a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/8412c5429a15/d3na00699a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/3cf39eb4f93e/d3na00699a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/37ff24f301bd/d3na00699a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/daafd9b70571/d3na00699a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/c359286f6b98/d3na00699a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/f775ecbcb1cc/d3na00699a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/fbdb48f89eed/d3na00699a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/2680f28fe561/d3na00699a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/b7559ba721c5/d3na00699a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/8412c5429a15/d3na00699a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/3cf39eb4f93e/d3na00699a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/37ff24f301bd/d3na00699a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/10964764/daafd9b70571/d3na00699a-f9.jpg

相似文献

[1]
Ionic liquid-coated lipid nanoparticles increase siRNA uptake into CNS targets.

Nanoscale Adv. 2023-12-5

[2]
Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.

AAPS J. 2021-12-6

[3]
Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells.

Eur J Pharm Biopharm. 2022-11

[4]
Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver.

Biomater Sci. 2021-2-21

[5]
Lipid Nanoparticle (LNP) Chemistry Can Endow Unique RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model.

Mol Pharm. 2022-11-7

[6]
Lipid nanoparticle-mediated drug delivery to the brain.

Adv Drug Deliv Rev. 2023-6

[7]
Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury.

Biomater Sci. 2023-6-13

[8]
Chemistry of Lipid Nanoparticles for RNA Delivery.

Acc Chem Res. 2022-1-4

[9]
Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging.

Curr Pharm Biotechnol. 2023-4-3

[10]
Lipid nanoparticles containing labile PEG-lipids transfect primary human skin cells more efficiently in the presence of apoE.

Eur J Pharm Biopharm. 2024-4

引用本文的文献

[1]
A QUARTER CENTURY OF CALCIUM-PERMEABLE ION CHANNEL, TRPV4: PERSPECTIVES ON EXPRESSION AND FUNCTION IN ENDOTHELIAL CELLS-TIME TO TRANSLATE.

Trans Am Clin Climatol Assoc. 2025

[2]
Glyco Ionic Liquids as Novel Nanoparticle Coatings to Enhance Triple-Negative Breast Cancer Drug Delivery.

Adv Healthc Mater. 2025-7-9

[3]
Piperazine-Derived Bisphosphonate-Based Ionizable Lipid Nanoparticles Enhance mRNA Delivery to the Bone Microenvironment.

Angew Chem Int Ed Engl. 2025-1-15

[4]
Liposomal Nanomaterials: A Rising Star in Glioma Treatment.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Lipid nanoparticle-mediated drug delivery to the brain.

Adv Drug Deliv Rev. 2023-6

[2]
Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.

Nat Rev Mater. 2023

[3]
Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells.

Eur J Pharm Biopharm. 2022-11

[4]
Application of ionic liquid to enhance the nose-to-brain delivery of etodolac.

Eur J Pharm Sci. 2022-11-1

[5]
Red Blood Cell Anchoring Enables Targeted Transduction and Re-Administration of AAV-Mediated Gene Therapy.

Adv Sci (Weinh). 2022-8

[6]
Ionic liquids charge ahead.

Nat Chem. 2022-7

[7]
Improved nanoformulation and bio-functionalization of linear-dendritic block copolymers with biocompatible ionic liquids.

Nanoscale. 2022-4-21

[8]
Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles.

J Control Release. 2022-1

[9]
Impact of anti-PEG antibody affinity on accelerated blood clearance of pegylated epoetin beta in mice.

Biomed Pharmacother. 2022-2

[10]
Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.

AAPS J. 2021-12-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索