Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali.
Antimicrob Agents Chemother. 2024 May 2;68(5):e0139023. doi: 10.1128/aac.01390-23. Epub 2024 Mar 28.
Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a -specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.
双氢青蒿素-哌喹对治疗无并发症疟疾有效,其全球应用正在增加。尽管哌喹在抗疟方面取得了积极的结果,但它对 Kv11.1 通道(hERG;由 基因编码)的抑制作用引起了人们对心脏安全性的关注。遗传因素是否可以调节哌喹介导的 QT 延长的风险尚不清楚。在这里,我们首先使用来自 141614 个人的数据来描绘 变异性的遗传景观。总的来说,我们发现了分布在整个基因体上的 1007 个外显子变体,其中 555 个是错义的。通过优化 16 个部分正交计算算法的基因特异性参数化,我们开发了一个专门针对 的集成分类器,总共确定了 116 个推定的有害错义变异。为了评估 变异性的临床相关性,我们随后对 293 名患有无并发症疟疾的马里患者进行了测序,并在 Kv11.1 的电压感应和孔域内鉴定了 13 个与通道阻滞剂直接相互作用的变体。在哌喹暴露前后对遗传和心电图数据进行交叉参考,结果显示,两种常见变体 rs1805121 和 rs41314375 的携带者经历了显著更高的 QT 延长(分别为 41.8 ms 和 61 ms,而对照组为 14.4 ms),超过 50%的携带者的 QTc 增加超过 30 ms。此外,我们还发现了三名携带罕见人群特异性变异的携带者,他们经历了临床相关的心室复极延迟。综合来看,我们的研究结果描绘了 的群体遗传变异性,并确定了哌喹诱导的 QT 延长的遗传生物标志物,这有助于标记高危患者,并优化抗疟治疗的疗效和依从性。