Suppr超能文献

利用系统参数化和机器学习预测土壤和沉积物系统中的烃类的初级生物降解。

Predicting Hydrocarbon Primary Biodegradation in Soil and Sediment Systems Using System Parameterization and Machine Learning.

机构信息

ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA.

Ricardo Energy & Environment, Harwell, UK.

出版信息

Environ Toxicol Chem. 2024 Jun;43(6):1352-1363. doi: 10.1002/etc.5857. Epub 2024 Mar 28.

Abstract

Technical complexity associated with biodegradation testing, particularly for substances of unknown or variable composition, complex reaction products, or biological materials (UVCB), necessitates the advancement of non-testing methods such as quantitative structure-property relationships (QSPRs). Models for describing the biodegradation of petroleum hydrocarbons (HCs) have been previously developed. A critical limitation of available models is their inability to capture the variability in biodegradation rates associated with variable test systems and environmental conditions. Recently, the Hydrocarbon Biodegradation System Integrated Model (HC-BioSIM) was developed to characterize the biodegradation of HCs in aquatic systems with the inclusion of key test system variables. The present study further expands the HC-BioSIM methodology to soil and sediment systems using a database of 2195 half-life (i.e., degradation time [DT]50) entries for HCs in soil and sediment. Relevance and reliability criteria were defined based on similarity to standard testing guidelines for biodegradation testing and applied to all entries in the database. The HC-BioSIM soil and sediment models significantly outperformed the existing biodegradation HC half-life (BioHCWin) and virtual evaluation of chemical properties and toxicities (VEGA) quantitative Mario Negri Institute for Pharmacological Research (IRFMN) models in soil and sediment. Average errors in predicted DT50s were reduced by up to 6.3- and 8.7-fold for soil and sediment, respectively. No significant bias as a function of HC class, carbon number, or test system parameters was observed. Model diagnostics demonstrated low variability in performance and high consistency of parameter usage/importance and rule structure, supporting the generalizability and stability of the models for application to external data sets. The HC-BioSIM provides improved accuracy of Persistence categorization, with correct classification rates of 83.9%, and 90.6% for soil and sediment, respectively, demonstrating a significant improvement over the existing BioHCWin (70.7% and 58.6%) and VEGA (59.5% and 18.5%) models. Environ Toxicol Chem 2024;43:1352-1363. © 2024 Concawe. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

摘要

与生物降解测试相关的技术复杂性,特别是对于未知或可变成分、复杂反应产物或生物材料(UVCB)的物质,需要推进非测试方法,如定量构效关系(QSBRs)。以前已经开发出了描述石油烃(HCs)生物降解的模型。现有模型的一个关键局限性是,它们无法捕捉到与可变测试系统和环境条件相关的生物降解率的可变性。最近,开发了烃类生物降解系统综合模型(HC-BioSIM),以在包含关键测试系统变量的情况下,对水生系统中 HCs 的生物降解进行特征描述。本研究进一步将 HC-BioSIM 方法扩展到土壤和沉积物系统,使用了一个包含 2195 个 HCs 在土壤和沉积物中半衰期(即降解时间 [DT]50)条目的数据库。根据与生物降解测试标准的相似性,定义了相关性和可靠性标准,并将其应用于数据库中的所有条目。HC-BioSIM 土壤和沉积物模型在土壤和沉积物中的表现明显优于现有的生物降解 HC 半衰期(BioHCWin)和虚拟评估化学性质和毒性(VEGA)定量马里奥·内格里药理研究所(IRFMN)模型。预测的 DT50 平均误差分别减少了 6.3 倍和 8.7 倍。未观察到 HC 类、碳原子数或测试系统参数的显著偏差。模型诊断表明,性能的变异性低,参数使用/重要性和规则结构的一致性高,支持模型的可推广性和稳定性,可应用于外部数据集。HC-BioSIM 提高了持久性分类的准确性,土壤和沉积物的正确分类率分别为 83.9%和 90.6%,与现有的 BioHCWin(70.7%和 58.6%)和 VEGA(59.5%和 18.5%)模型相比,有显著提高。Environ Toxicol Chem 2024;43:1352-1363. © 2024 Concawe. Environmental Toxicology and Chemistry 由 Wiley Periodicals LLC 代表 SETAC 出版。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验