Suppr超能文献

针对早期肺腺癌和鳞癌的组织学驱动的低分割放射治疗方案。

Histology-driven hypofractionated radiation therapy schemes for early-stage lung adenocarcinoma and squamous cell carcinoma.

机构信息

Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.

Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.

出版信息

Radiother Oncol. 2024 Jun;195:110257. doi: 10.1016/j.radonc.2024.110257. Epub 2024 Mar 26.

Abstract

BACKGROUND AND PURPOSE

Histology was found to be an important prognostic factor for local tumor control probability (TCP) after stereotactic body radiotherapy (SBRT) of early-stage non-small-cell lung cancer (NSCLC). A histology-driven SBRT approach has not been explored in routine clinical practice and histology-dependent fractionation schemes remain unknown. Here, we analyzed pooled histologic TCP data as a function of biologically effective dose (BED) to determine histology-driven fractionation schemes for SBRT and hypofractionated radiotherapy of two predominant early-stage NSCLC histologic subtypes adenocarcinoma (ADC) and squamous cell carcinoma (SCC).

MATERIAL AND METHODS

The least-χ method was used to fit the collected histologic TCP data of 8510 early-stage NSCLC patients to determine parameters for a well-developed radiobiological model per the Hypofractionated Treatment Effects in the Clinic (HyTEC) initiative.

RESULTS

A fit to the histologic TCP data yielded independent radiobiological parameter sets for radiotherapy of early-stage lung ADC and SCC. TCP increases steeply with BED and reaches an asymptotic maximal plateau, allowing us to determine model-independent optimal fractionation schemes of least doses in 1-30 fractions to achieve maximal tumor control for early-stage lung ADC and SCC, e.g., 30, 44, 48, and 51 Gy for ADC, and 32, 48, 54, and 58 Gy for SCC in 1, 3, 4, and 5 fractions, respectively.

CONCLUSION

We presented the first determination of histology-dependent radiobiological parameters and model-independent histology-driven optimal SBRT and hypofractionated radiation therapy schemes for early-stage lung ADC and SCC. SCC requires substantially higher radiation doses to maximize tumor control than ADC, plausibly attributed to tumor genetic diversity and microenvironment. The determined optimal SBRT schemes agree well with clinical practice for early-stage lung ADC. These proposed optimal fractionation schemes provide first insights for histology-based personalized radiotherapy of two predominant early-stage NSCLC subtypes ADC and SCC, which require further validation with large-scale histologic TCP data.

摘要

背景与目的

组织学被发现是立体定向体部放射治疗(SBRT)早期非小细胞肺癌(NSCLC)局部肿瘤控制概率(TCP)的重要预后因素。一种基于组织学的 SBRT 方法尚未在常规临床实践中探索,且组织学依赖性分割方案仍不清楚。在此,我们分析了汇集的组织学 TCP 数据作为生物有效剂量(BED)的函数,以确定用于 SBRT 和两种主要早期 NSCLC 组织学亚型腺癌(ADC)和鳞状细胞癌(SCC)的亚分割放射治疗的组织学驱动分割方案。

材料与方法

使用最小 χ 方法拟合了 8510 例早期 NSCLC 患者的组织学 TCP 数据,以根据 Hypofractionated Treatment Effects in the Clinic(HyTEC)计划确定完善的放射生物学模型的参数。

结果

组织学 TCP 数据的拟合产生了用于早期肺癌 ADC 和 SCC 放射治疗的独立放射生物学参数集。TCP 随 BED 急剧增加并达到渐近最大平台,使我们能够确定早期肺癌 ADC 和 SCC 实现最大肿瘤控制的模型独立最佳分割方案,例如,ADC 为 30、44、48 和 51 Gy,1、3、4 和 5 个分数,分别为 SCC 的 32、48、54 和 58 Gy。

结论

我们首次确定了早期肺 ADC 和 SCC 的组织学依赖性放射生物学参数和模型独立的组织学驱动的最佳 SBRT 和亚分割放射治疗方案。与 ADC 相比,SCC 最大限度地控制肿瘤需要更高的放射剂量,这很可能归因于肿瘤遗传多样性和微环境。确定的最佳 SBRT 方案与早期肺癌的临床实践非常吻合。这些建议的最佳分割方案为两种主要的早期 NSCLC 亚型 ADC 和 SCC 的基于组织学的个性化放射治疗提供了初步见解,这需要进一步用大规模的组织学 TCP 数据进行验证。

相似文献

3
Optimal Radiation Therapy Fractionation Regimens for Early-Stage Non-Small Cell Lung Cancer.早期非小细胞肺癌的最佳放射治疗分割方案
Int J Radiat Oncol Biol Phys. 2024 Mar 1;118(3):829-838. doi: 10.1016/j.ijrobp.2023.09.017. Epub 2023 Sep 19.

本文引用的文献

1
Optimal Radiation Therapy Fractionation Regimens for Early-Stage Non-Small Cell Lung Cancer.早期非小细胞肺癌的最佳放射治疗分割方案
Int J Radiat Oncol Biol Phys. 2024 Mar 1;118(3):829-838. doi: 10.1016/j.ijrobp.2023.09.017. Epub 2023 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验