State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, China.
Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.
Plant Biotechnol J. 2024 Aug;22(8):2312-2326. doi: 10.1111/pbi.14346. Epub 2024 Mar 28.
Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome-wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone-9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.
类胡萝卜素对植物至关重要,也是人类饮食的重要组成部分。类胡萝卜素的代谢途径在植物物种中是保守的,但我们对大多数谷类作物种子中类胡萝卜素变异的遗传基础的理解仍然有限。为了解决这个问题,我们使用六个重组自交系(RIL)群体系统地进行了 8 个类胡萝卜素性状的连锁和关联作图。单连锁作图(SLM)和联合连锁作图(JLM)鉴定了 77 个独特的加性 QTL 和 104 对上位性 QTL。在这些 QTL 中,我们鉴定了 22 个加性和上位性位点的重叠热点,突出了一些 QTL 通过加性或上位性机制对类胡萝卜素水平的重要贡献。基于所有 RIL 的全基因组关联研究检测到 244 个与类胡萝卜素性状显著相关的候选基因,其中 23 个被注释为类胡萝卜素途径基因。效应比较表明,与途径基因连锁的少数位点对我们测试的群体中的类胡萝卜素变异有很大的影响,但许多与途径基因不相关的位点也对类胡萝卜素变异有重要贡献。我们鉴定了 ZmPTOX 为 Q10/JLM10/GWAS019 热点 QTL 的因果基因;该基因编码一种假定的质体末端氧化酶,产生质体醌-9,被类胡萝卜素途径中的两种酶使用。ZmPTOX 的启动子和第二外显子中的自然变异被发现可以改变类胡萝卜素水平。对类胡萝卜素变异遗传机制的全面评估为重新布线类胡萝卜素代谢和积累以实现有效的类胡萝卜素生物强化奠定了基础。