Suppr超能文献

颗粒与小聚集体碰撞中粘附、反弹和聚集体破坏的原子尺度研究。

An atomistic study of sticking, bouncing, and aggregate destruction in collisions of grains with small aggregates.

作者信息

Nietiadi Maureen L, Urbassek Herbert M, Rosandi Yudi

机构信息

Department of Geophysics, Universitas Padjadjaran, Jatinangor, Sumedang, 45363, Indonesia.

Physics Department, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.

出版信息

Sci Rep. 2024 Mar 28;14(1):7439. doi: 10.1038/s41598-024-57844-y.

Abstract

Molecular dynamics simulations are used to study central collisions between spherical grains and between grains and small grain aggregates (up to 5 grains). For a model material (Lennard-Jones), grain-grain collisions are sticking when the relative velocity v is smaller than the so-called bouncing velocity and bouncing for higher velocities. We find a similar behavior for grain-aggregate collisions. The value of the bouncing velocity depends only negligibly on the aggregate size. However, it is by 35% larger than the separation velocity needed to break a contact; this is explained by energy dissipation processes during the collision. The separation velocity follows the predictions of the macroscopic Johnson-Kendall-Roberts theory of contacts. At even higher collision velocities, the aggregate is destroyed, first by the loss of a monomer grain and then by total disruption. In contrast to theoretical considerations, we do not find a proportionality of the collision energy needed for destruction and the number of bonds to be broken. Our study thus sheds novel light on the foundations of granular mechanics, namely the energy needed to separate two grains, the difference between grain-grain and grain-aggregate collisions, and the energy needed for aggregate destruction.

摘要

分子动力学模拟用于研究球形颗粒之间以及颗粒与小颗粒聚集体(最多5个颗粒)之间的中心碰撞。对于一种模型材料( Lennard-Jones ),当相对速度v小于所谓的反弹速度时,颗粒-颗粒碰撞是粘性的,而对于更高的速度则是反弹的。我们发现颗粒-聚集体碰撞也有类似的行为。反弹速度的值仅略微依赖于聚集体尺寸。然而,它比打破一个接触所需的分离速度大35%;这可以通过碰撞过程中的能量耗散过程来解释。分离速度遵循宏观的约翰逊-肯德尔-罗伯茨接触理论的预测。在更高的碰撞速度下,聚集体会被破坏,首先是一个单体颗粒的损失,然后是完全破碎。与理论考虑相反,我们没有发现破坏所需的碰撞能量与要打破的键的数量之间的比例关系。因此,我们的研究为颗粒力学的基础提供了新的见解,即分离两个颗粒所需的能量、颗粒-颗粒碰撞和颗粒-聚集体碰撞之间的差异以及聚集体破坏所需的能量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验