Suppr超能文献

口咽鳞状细胞癌氟脱氧葡萄糖正电子发射断层扫描影像组学中不同离散化参数的预后价值

Prognostic value of different discretization parameters in fluorodeoxyglucose positron emission tomography radiomics of oropharyngeal squamous cell carcinoma.

作者信息

Riley Breylon A, Stevens Jack B, Li Xiang, Yang Zhenyu, Wang Chunhao, Mowery Yvonne M, Brizel David M, Yin Fang-Fang, Lafata Kyle J

机构信息

Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States.

Duke University, Department of Radiation Oncology, Durham, North Carolina, United States.

出版信息

J Med Imaging (Bellingham). 2024 Mar;11(2):024007. doi: 10.1117/1.JMI.11.2.024007. Epub 2024 Mar 27.

Abstract

PURPOSE

We aim to interrogate the role of positron emission tomography (PET) image discretization parameters on the prognostic value of radiomic features in patients with oropharyngeal cancer.

APPROACH

A prospective clinical trial (NCT01908504) enrolled patients with oropharyngeal squamous cell carcinoma (; mixed HPV status) undergoing definitive radiotherapy and evaluated intra-treatment fluorodeoxyglucose PET as a potential imaging biomarker of early metabolic response. The primary tumor volume was manually segmented by a radiation oncologist on PET/CT images acquired two weeks into treatment (20 Gy). From this, 54 radiomic texture features were extracted. Two image discretization techniques-fixed bin number (FBN) and fixed bin size (FBS)-were considered to evaluate systematic changes in the bin number ({32, 64, 128, 256} gray levels) and bin size ({0.10, 0.15, 0.22, 0.25} bin-widths). For each discretization-specific radiomic feature space, an LASSO-regularized logistic regression model was independently trained to predict residual and/or recurrent disease. The model training was based on Monte Carlo cross-validation with a 20% testing hold-out, 50 permutations, and minor-class up-sampling to account for imbalanced outcomes data. Performance differences among the discretization-specific models were quantified via receiver operating characteristic curve analysis. A final parameter-optimized logistic regression model was developed by incorporating different settings parameterizations into the same model.

RESULTS

FBN outperformed FBS in predicting residual and/or recurrent disease. The four FBN models achieved AUC values of 0.63, 0.61, 0.65, and 0.62 for 32, 64, 128, and 256 gray levels, respectively. By contrast, the average AUC of the four FBS models was 0.53. The parameter-optimized model, comprising features joint entropy (FBN = 64) and information measure correlation 1 (FBN = 128), achieved an AUC of 0.70. Kaplan-Meier analyses identified these features to be associated with disease-free survival ( and , respectively; log-rank test).

CONCLUSIONS

Our findings suggest that the prognostic value of individual radiomic features may depend on feature-specific discretization parameter settings.

摘要

目的

我们旨在探讨正电子发射断层扫描(PET)图像离散化参数对口咽癌患者放射组学特征预后价值的影响。

方法

一项前瞻性临床试验(NCT01908504)纳入了接受根治性放疗的口咽鳞状细胞癌患者(HPV状态混合),并将治疗期间的氟脱氧葡萄糖PET评估为早期代谢反应的潜在影像生物标志物。放疗肿瘤学家在治疗两周(20 Gy)时获取的PET/CT图像上手动分割原发肿瘤体积。由此提取了54个放射组学纹理特征。考虑了两种图像离散化技术——固定箱数(FBN)和固定箱大小(FBS)——以评估箱数({32、64、128、256}个灰度级)和箱大小({0.10、0.15、0.22、0.25}个箱宽)的系统变化。对于每个特定离散化的放射组学特征空间,独立训练一个LASSO正则化逻辑回归模型来预测残留和/或复发性疾病。模型训练基于蒙特卡洛交叉验证,留出20%用于测试,进行50次排列,并对少数类进行过采样以处理不平衡的结果数据。通过受试者工作特征曲线分析量化特定离散化模型之间的性能差异。通过将不同的设置参数化纳入同一模型,开发了一个最终的参数优化逻辑回归模型。

结果

在预测残留和/或复发性疾病方面,FBN优于FBS。四个FBN模型在32、64、128和256个灰度级时的AUC值分别为0.63、0.61、0.65和0.62。相比之下,四个FBS模型的平均AUC为0.53。包含联合熵特征(FBN = 64)和信息测度相关性1特征(FBN = 128)的参数优化模型的AUC为0.70。Kaplan-Meier分析确定这些特征分别与无病生存期相关(分别为 和 ;对数秩检验)。

结论

我们的研究结果表明,单个放射组学特征的预后价值可能取决于特定于特征的离散化参数设置。

相似文献

本文引用的文献

3
Radiomics: a primer on high-throughput image phenotyping.放射组学:高通量图像表型分析简介。
Abdom Radiol (NY). 2022 Sep;47(9):2986-3002. doi: 10.1007/s00261-021-03254-x. Epub 2021 Aug 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验