Stacho Martin, Häusler A Niklas, Brandstetter Andrea, Iannilli Francesca, Mohlberg Hartmut, Schiffer Christian, Smaers Jeroen B, Amunts Katrin
C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany.
Front Neuroanat. 2024 Mar 13;18:1331305. doi: 10.3389/fnana.2024.1331305. eCollection 2024.
The red nucleus is part of the motor system controlling limb movements. While this seems to be a function common in many vertebrates, its organization and circuitry have undergone massive changes during evolution. In primates, it is sub-divided into the magnocellular and parvocellular parts that give rise to rubrospinal and rubro-olivary connection, respectively. These two subdivisions are subject to striking variation within the primates and the size of the magnocellular part is markedly reduced in bipedal primates including humans. The parvocellular part is part of the olivo-cerebellar circuitry that is prominent in humans. Despite the well-described differences between species in the literature, systematic comparative studies of the red nucleus remain rare.
We therefore mapped the red nucleus in cytoarchitectonic sections of 20 primate species belonging to 5 primate groups including prosimians, new world monkeys, old world monkeys, non-human apes and humans. We used Ornstein-Uhlenbeck modelling, ancestral state estimation and phylogenetic analysis of covariance to scrutinize the phylogenetic relations of the red nucleus volume.
We created openly available high-resolution cytoarchitectonic delineations of the human red nucleus in the microscopic BigBrain model and human probabilistic maps that capture inter-subject variations in quantitative terms. Further, we compared the volume of the nucleus across primates and showed that the parvocellular subdivision scaled proportionally to the brain volume across the groups while the magnocellular part deviated significantly from the scaling in humans and non-human apes. These two groups showed the lowest size of the magnocellular red nucleus relative to the whole brain volume and the largest relative difference between the parvocellular and magnocellular subdivision.
That is, the red nucleus has transformed from a magnocellular-dominated to a parvocellular-dominated station. It is reasonable to assume that these changes are intertwined with evolutionary developments in other brain regions, in particular the motor system. We speculate that the interspecies variations might partly reflect the differences in hand dexterity but also the tentative involvement of the red nucleus in sensory and cognitive functions.
红核是控制肢体运动的运动系统的一部分。虽然这似乎是许多脊椎动物共有的功能,但其组织结构和神经回路在进化过程中发生了巨大变化。在灵长类动物中,它被分为大细胞部和小细胞部,分别产生红核脊髓束和红核橄榄核连接。这两个亚部分在灵长类动物中存在显著差异,在包括人类在内的两足灵长类动物中,大细胞部的大小明显减小。小细胞部是人类突出的橄榄小脑神经回路的一部分。尽管文献中对物种间的差异已有详尽描述,但对红核的系统比较研究仍然很少。
因此,我们在属于5个灵长类动物群体(包括原猴亚目、新大陆猴、旧大陆猴、非人类猿和人类)的20种灵长类动物的细胞构筑切片中绘制了红核图谱。我们使用奥恩斯坦 - 乌伦贝克模型、祖先状态估计和系统发育协方差分析来仔细研究红核体积的系统发育关系。
我们在微观的大脑模型和人类概率图谱中创建了公开可用的高分辨率人类红核细胞构筑描绘,这些图谱从数量上捕捉了个体间的差异。此外,我们比较了灵长类动物的红核体积,结果表明,小细胞亚部在各群体中与脑体积成比例缩放,而大细胞部在人类和非人类猿中明显偏离这种缩放比例。这两个群体的大细胞红核相对于全脑体积最小,小细胞部和大细胞部之间的相对差异最大。
也就是说,红核已从以大细胞为主的结构转变为以小细胞为主的结构。有理由假设这些变化与其他脑区,特别是运动系统的进化发展相互交织。我们推测物种间的差异可能部分反映了手部灵活性的差异,但也可能反映了红核在感觉和认知功能中的初步参与。