Suppr超能文献

液相色谱-质谱联用测定兽用抗生素保留时间的计算预测

Computational prediction of retention times of veterinary antibiotics obtained by liquid chromatography-mass spectrometry.

作者信息

Rojas Cristian, Sarmiento Nicole, Ayora Emilia, Pis Diez Reinaldo

机构信息

Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador.

CEQUINOR, Centro de Química Inorgánica (CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.

出版信息

J Sci Food Agric. 2024 Aug 30;104(11):6724-6732. doi: 10.1002/jsfa.13499. Epub 2024 Apr 9.

Abstract

BACKGROUND

Veterinary antibiotics are chemical compounds used to kill or inhibit the growth of pathogenic bacteria associated with animal diseases. These molecules can be defined by their retention times (t) in liquid chromatography-mass spectrometry (LC-MS). One strategy to predict the t of new veterinary antibiotics is the development of predictive quantitative structure-property relationships (QSPRs), which were used in this study.

RESULTS

A database of 122 antibiotics was selected in which the t was measured using a Hypersil GOLD column. An optimal three-feature model was developed by integrating the unsupervised variable reduction, replacement method variable subset selection, and multiple linear regression. The negligible differences among the coefficient of determination and the root-mean-square error for the training set (R = 0.902 and RMSEC = 0.871) and test set (Q = 0.854 and RMSEP = 1.064) indicate a stable and predictive model. In a further step, a more in-depth explanation of the mechanism of action of each descriptor in predicting the t is provided, with the construction of the theoretical chemical space for accurate predictions of new antibiotics.

CONCLUSION

The in silico model developed in this work identified three molecular descriptors associated with aqueous solubility, octanol-water partition coefficient, and the presence of negative and lipophilic atom pairs. The QSPR developed here could be implemented by agricultural and food chemists to identify and monitor existing and new antibiotics within the framework of LC-MS. The computational model was developed in accordance with five principles outlined by the Organization for Economic Co-operation and Development. © 2024 Society of Chemical Industry.

摘要

背景

兽用抗生素是用于杀死或抑制与动物疾病相关的致病细菌生长的化合物。这些分子可以通过它们在液相色谱 - 质谱联用仪(LC - MS)中的保留时间(t)来定义。预测新兽用抗生素保留时间的一种策略是开发预测性定量结构 - 性质关系(QSPRs),本研究中使用了这种方法。

结果

选择了一个包含122种抗生素的数据库,其中保留时间是使用Hypersil GOLD柱测量的。通过整合无监督变量约简、替换法变量子集选择和多元线性回归,开发了一个最优的三特征模型。训练集(R = 0.902,RMSEC = 0.871)和测试集(Q = 0.854,RMSEP = 1.064)的决定系数和均方根误差之间的微小差异表明该模型稳定且具有预测性。在进一步的步骤中,通过构建理论化学空间以准确预测新抗生素,对每个描述符在预测保留时间时的作用机制进行了更深入的解释。

结论

本研究开发的计算机模型确定了与水溶性、正辛醇 - 水分配系数以及负性和亲脂性原子对的存在相关的三个分子描述符。这里开发的QSPR可由农业和食品化学家用于在LC - MS框架内识别和监测现有及新的抗生素。该计算模型是根据经济合作与发展组织概述的五项原则开发的。© 2024化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验