Suppr超能文献

基于化学信息学的酚类化合物抗氧化活性建模。

Chemoinformatic modelling of the antioxidant activity of phenolic compounds.

机构信息

Departamento de Industrias - ITAPROQ (CONICET, UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Ciudad de Buenos Aires, Argentina.

Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador.

出版信息

J Sci Food Agric. 2023 Aug 15;103(10):4867-4875. doi: 10.1002/jsfa.12561. Epub 2023 Mar 29.

Abstract

BACKGROUND

Antioxidants are chemicals used to protect foods from deterioration by neutralizing free radicals and inhibiting the oxidative process. One approach to investigate the antioxidant activity is to develop quantitative structure-activity relationships (QSARs).

RESULTS

A curated database of 165 structurally heterogeneous phenolic compounds with the Trolox equivalent antioxidant capacity (TEAC) was developed. Molecular geometries were optimized by means of the GFN2-xTB semiempirical method and diverse molecular descriptors were obtained afterwards. For model development, V-WSP unsupervised variable reduction was used before performing the genetic algorithms-variable subset selection (GAs-VSS) to construct the best five-descriptor multiple linear regression model. The coefficient of determination and the root mean square error were used to measure the performance in calibration (R  = 0.789 and RMSEC = 0.381), and test set prediction (Q  = 0.748 and RMSEP = 0.416), along several cross-validation criteria. To thoroughly understand the TEAC prediction, a fully explained mechanism of action of the descriptors is provided. In addition, the applicability domain of the model defined a theoretical chemical space for reliable predictions of new phenolic compounds.

CONCLUSION

This in silico model conforms to the five principles stated by the Organisation for Economic Co-operation and Development. The model might be useful for virtual screening of the antioxidant chemical space and for identifying the most potent molecules related to an experimental measurement of TEAC activity. In addition, the model could assist chemists working on computer-aided drug design for the synthesis of new targets with improved activity and potential uses in food science. © 2023 Society of Chemical Industry.

摘要

背景

抗氧化剂是通过中和自由基和抑制氧化过程来保护食物免受变质的化学物质。一种研究抗氧化活性的方法是开发定量构效关系(QSAR)。

结果

开发了一个包含 165 种结构异构酚类化合物和 Trolox 等效抗氧化能力(TEAC)的经过精心整理的数据库。通过 GFN2-xTB 半经验方法优化分子几何形状,随后获得了多种分子描述符。为了进行模型开发,在进行遗传算法-变量子集选择(GAs-VSS)构建最佳五变量多元线性回归模型之前,使用了 V-WSP 无监督变量减少。使用决定系数和均方根误差来衡量校准(R  = 0.789 和 RMSEC = 0.381)和测试集预测(Q  = 0.748 和 RMSEP = 0.416)的性能,以及几个交叉验证标准。为了彻底了解 TEAC 的预测,可以提供描述符的完全解释作用机制。此外,模型的适用性域定义了一个理论化学空间,用于可靠地预测新的酚类化合物。

结论

该计算机模型符合经济合作与发展组织规定的五个原则。该模型可用于抗氧化化学空间的虚拟筛选,并用于识别与 TEAC 活性的实验测量相关的最有效分子。此外,该模型可以帮助从事计算机辅助药物设计的化学家合成具有改善活性和潜在用途的新靶标。© 2023 化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验