IEEE J Biomed Health Inform. 2024 Jul;28(7):3895-3906. doi: 10.1109/JBHI.2024.3383240. Epub 2024 Jul 2.
wearable sensor technology has progressed significantly in the last decade, but its clinical usability for the assessment of obstructive sleep apnea (OSA) is limited by the lack of large and representative datasets simultaneously acquired with polysomnography (PSG). The objective of this study was to explore the use of cardiorespiratory signals common in standard PSGs which can be easily measured with wearable sensors, to estimate the severity of OSA.
an artificial neural network was developed for detecting sleep disordered breathing events using electrocardiogram (ECG) and respiratory effort. The network was combined with a previously developed cardiorespiratory sleep staging algorithm and evaluated in terms of sleep staging classification performance, apnea-hypopnea index (AHI) estimation, and OSA severity estimation against PSG on a cohort of 653 participants with a wide range of OSA severity.
four-class sleep staging achieved a κ of 0.69 versus PSG, distinguishing wake, combined N1-N2, N3 and REM. AHI estimation achieved an intraclass correlation coefficient of 0.91, and high diagnostic performance for different OSA severity thresholds.
this study highlights the potential of using cardiorespiratory signals to estimate OSA severity, even without the need for airflow or oxygen saturation (SpO2), traditionally used for assessing OSA.
while further research is required to translate these findings to practical and unobtrusive sensors, this study demonstrates how existing, large datasets can serve as a foundation for wearable systems for OSA monitoring. Ultimately, this approach could enable long-term assessment of sleep disordered breathing, facilitating new avenues for clinical research in this field.
可穿戴传感器技术在过去十年中取得了重大进展,但由于缺乏同时与多导睡眠图(PSG)采集的大型代表性数据集,其在阻塞性睡眠呼吸暂停(OSA)评估中的临床可用性受到限制。本研究旨在探索使用可穿戴传感器可轻松测量的标准 PSG 中常见的心呼吸信号来估计 OSA 的严重程度。
使用心电图(ECG)和呼吸努力开发了用于检测睡眠呼吸障碍事件的人工神经网络。该网络与先前开发的心呼吸睡眠分期算法相结合,并根据 653 名参与者的 PSG 评估睡眠分期分类性能、呼吸暂停低通气指数(AHI)估计值和 OSA 严重程度,这些参与者的 OSA 严重程度范围很广。
四分类睡眠分期与 PSG 的κ值为 0.69,可区分清醒、N1-N2 混合期、N3 和 REM。AHI 估计值的组内相关系数为 0.91,对不同的 OSA 严重程度阈值具有较高的诊断性能。
本研究强调了使用心呼吸信号来估计 OSA 严重程度的潜力,即使不需要传统上用于评估 OSA 的气流或氧饱和度(SpO2)。虽然需要进一步的研究将这些发现转化为实用且不引人注目的传感器,但本研究展示了现有大型数据集如何为 OSA 监测的可穿戴系统提供基础。最终,这种方法可以实现对睡眠呼吸障碍的长期评估,为该领域的临床研究开辟新途径。