Department of Management of Complex Systems, School of Engineering, University of California, Merced, CA, USA.
National Parks Institute, Ernest and Julio Gallo Management Program, School of Engineering, University of California, Merced, CA, USA.
J Environ Manage. 2024 Apr;357:120699. doi: 10.1016/j.jenvman.2024.120699. Epub 2024 Mar 28.
The US National Park System encompasses diverse environmental and tourism management regimes, together governed by the 1916 Organic Act and its dual mandate of conservation and provision of public enjoyment. However, with the introduction of transformative science policy in the 2000's, the mission scope has since expanded to promote overarching science-based objectives. Yet despite this paradigm shift instituting "science for parks, parks for science", there is scant research exploring the impact of the National Park Science Policy on the provision of knowledge. We address this gap by developing a spatiotemporal framework for evaluating research alignment, here operationalized via quantifiable measures of supply and demand for scientific knowledge. Specifically, we apply a machine learning algorithm (Latent Dirichlet analysis) to a comprehensive park-specific text corpus (combining official needs statements -i.e. demand- and scientific research metadata -i.e. supply-) to define a joint topic space, which thereby facilitates quantifying the direction and degree of alignment at multiple levels. Results indicate an overall robust degree of research alignment, with misaligned topics tending to be over-researched (as opposed to over-demanded), which may be favorable to many parks, but is inefficient from the park system perspective. Results further indicate that the transformative science policy exacerbated the misalignment in mandated research domains. In light of these results, we argue for improved decision support mechanisms to achieve more timely alignment of research efforts towards distinctive park needs, thereby fostering convergent knowledge co-production and leveraging the full value of National Parks as living laboratories.
美国国家公园系统涵盖了多样化的环境和旅游管理机制,这些机制共同受 1916 年组织法案及其保护和提供公共享受的双重任务的管辖。然而,随着 21 世纪 transformative 科学政策的引入,使命范围已经扩大,以促进基于科学的总体目标。尽管这种范式转变倡导“为公园提供科学,为科学提供公园”,但几乎没有研究探索国家公园科学政策对知识提供的影响。我们通过开发一个时空框架来评估研究一致性来解决这一差距,在这里通过科学知识的供应和需求的可量化措施来实现。具体来说,我们应用机器学习算法(潜在狄利克雷分析)对一个全面的、针对公园的文本语料库(结合官方需求陈述-即需求-和科学研究元数据-即供应-)进行操作,以定义一个联合主题空间,从而方便在多个层次上量化一致性的方向和程度。结果表明研究一致性的整体稳健程度很高,不一致的主题往往被过度研究(而不是过度需求),这对许多公园来说是有利的,但从公园系统的角度来看效率低下。结果进一步表明,变革性的科学政策加剧了授权研究领域的错位。鉴于这些结果,我们主张改进决策支持机制,以实现更及时地将研究工作与独特的公园需求相一致,从而促进趋同的知识共同生产,并充分利用国家公园作为活实验室的价值。