文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用颈椎侧位头颅侧位片的人工智能分析来确定青春期生长突增。

Determination of the pubertal growth spurt by artificial intelligence analysis of cervical vertebrae maturation in lateral cephalometric radiographs.

机构信息

Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.

Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.

出版信息

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Aug;138(2):306-315. doi: 10.1016/j.oooo.2024.02.017. Epub 2024 Mar 1.


DOI:10.1016/j.oooo.2024.02.017
PMID:38553310
Abstract

OBJECTIVE: This study aimed to assess the performance of a convolutional neural network (CNN) model in detecting the pubertal growth spurt by analyzing cervical vertebrae maturation (CVM) in lateral cephalometric radiographs (LCRs). STUDY DESIGN: In total, 600 LCRs of patients from 6 to 17 years old were selected. Three radiologists independently and blindly classified the maturation stages of the LCRs and defined the difficulty of each classification. Subsequently, the stage and level of difficulty were determined by consensus. LCRs were distributed between training, validation, and test datasets across 4 CNN-based models. The models' responses were compared with the radiologists' reference standard, and the architecture with the highest success rate was selected for evaluation. Models were developed using full and cropped LCRs with original and simplified maturation classifications. RESULTS: In the simplified classification, the Inception-v3 CNN yielded an accuracy of 74% and 75%, with recall and precision values of 61% and 62%, for full and cropped LCRs, respectively. It achieved 61% and 62% total success rates with full and cropped LCRs, respectively, reaching 72.7% for easy-to-classify cropped cases. CONCLUSION: Overall, the CNN model demonstrated potential for determining the maturation status regarding the pubertal growth spurt through images of the cervical vertebrae. It may be useful as an initial assessment tool or as an aid for optimizing the assessment and treatment decisions of the clinician.

摘要

目的:本研究旨在通过分析侧位颅侧片(LCR)中的颈椎成熟度(CVM),评估卷积神经网络(CNN)模型在检测青春期生长突增中的性能。

研究设计:共选取 600 例 6 至 17 岁患者的 LCR。三位放射科医生独立、盲法对 LCR 的成熟阶段进行分类,并定义了每次分类的难度。然后通过共识确定阶段和难度级别。LCR 分布在 4 个基于 CNN 的模型的训练、验证和测试数据集之间。将模型的响应与放射科医生的参考标准进行比较,并选择成功率最高的架构进行评估。使用完整和裁剪的 LCR 以及原始和简化的成熟分类来开发模型。

结果:在简化分类中,Inception-v3 CNN 在完整和裁剪的 LCR 上的准确率分别为 74%和 75%,召回率和精度值分别为 61%和 62%。它在完整和裁剪的 LCR 上分别实现了 61%和 62%的总成功率,对于易于分类的裁剪病例达到了 72.7%的成功率。

结论:总体而言,CNN 模型通过颈椎图像显示出在确定青春期生长突增成熟状态方面的潜力。它可以作为初始评估工具或辅助工具,帮助临床医生优化评估和治疗决策。

相似文献

[1]
Determination of the pubertal growth spurt by artificial intelligence analysis of cervical vertebrae maturation in lateral cephalometric radiographs.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-8

[2]
Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence.

Prog Orthod. 2024-6-24

[3]
Deep convolutional neural network-the evaluation of cervical vertebrae maturation.

Oral Radiol. 2023-10

[4]
A practical method for determining pubertal growth spurt.

Am J Orthod Dentofacial Orthop. 2006-8

[5]
Automatic determination of pubertal growth spurts based on the cervical vertebral maturation staging using deep convolutional neural networks.

J World Fed Orthod. 2023-4

[6]
Discriminatory ability of the skeletal maturation index and the cervical vertebrae maturation index in detecting peak pubertal growth in Indonesian and white subjects with receiver operating characteristics analysis.

Am J Orthod Dentofacial Orthop. 2008-8

[7]
Evaluation of the compatibility of C2, C3, and C4 fractal dimension values with hand-wrist and cervical vertebra maturation methods in determining skeletal maturation.

Dentomaxillofac Radiol. 2022-9-1

[8]
Skeletal maturation in individuals with Down's syndrome: comparison between PGS curve, cervical vertebrae and bones of the hand and wrist.

Dental Press J Orthod. 2014

[9]
Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models.

Dentomaxillofac Radiol. 2020-3-9

[10]
Convolutional neural network-based automatic cervical vertebral maturation classification method.

Dentomaxillofac Radiol. 2022-9-1

引用本文的文献

[1]
Artificial Intelligence-Related Dental Research: Bibliometric and Altmetric Analysis.

Int Dent J. 2025-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索