Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Nat Commun. 2024 Mar 29;15(1):2756. doi: 10.1038/s41467-024-46446-x.
Protein fibril self-assembly is a universal transition implicated in neurodegenerative diseases. Although fibril structure/growth are well characterized, fibril nucleation is poorly understood. Here, we use a computational-experimental approach to resolve fibril nucleation. We show that monomer hairpin content quantified from molecular dynamics simulations is predictive of experimental fibril formation kinetics across a tau motif mutant library. Hairpin trimers are predicted to be fibril transition states; one hairpin spontaneously converts into the cross-beta conformation, templating subsequent fibril growth. We designed a disulfide-linked dimer mimicking the transition state that catalyzes fibril formation, measured by ThT fluorescence and TEM, of wild-type motif - which does not normally fibrillize. A dimer compatible with extended conformations but not the transition-state fails to nucleate fibril at any concentration. Tau repeat domain simulations show how long-range interactions sequester this motif in a mutation-dependent manner. This work implies that different fibril morphologies could arise from disease-dependent hairpin seeding from different loci.
蛋白质原纤维自组装是一种普遍存在的转变,与神经退行性疾病有关。尽管原纤维的结构/生长已经得到很好的描述,但原纤维的成核过程仍知之甚少。在这里,我们使用计算实验的方法来解决原纤维成核的问题。我们发现,从分子动力学模拟中定量的单体发夹含量可以预测在tau 模体突变体文库中实验原纤维形成动力学。发夹三聚体被预测为原纤维转变状态;一个发夹会自发地转化为交叉-β构象,模板随后的原纤维生长。我们设计了一种二硫键连接的二聚体模拟物,模拟了构象转变状态,通过 ThT 荧光和 TEM 测量,发现野生型模体 - 通常不会纤维化 - 可以催化原纤维的形成。与扩展构象兼容但不是转变状态的二聚体在任何浓度下都不能引发原纤维形成。tau 重复结构域模拟显示了长程相互作用如何以依赖于突变的方式将该模体隔离。这项工作表明,不同的原纤维形态可能是由于不同部位的发夹引发依赖于疾病的方式而产生的。