Suppr超能文献

外周血单个核细胞中预测性三标志物panel 用于检测肝细胞癌。

Predictive three-biomarker panel in peripheral blood mononuclear cells for detecting hepatocellular carcinoma.

机构信息

Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2024 Mar 29;14(1):7527. doi: 10.1038/s41598-024-58158-9.

Abstract

Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers and accounts for a significant proportion of cancer-associated deaths worldwide. This disease, marked by multifaceted etiology, often poses diagnostic challenges. Finding a reliable and non-invasive diagnostic method seems to be necessary. In this study, we analyzed the gene expression profiles of 20 HCC patients, 12 individuals with chronic hepatitis, and 15 healthy controls. Enrichment analysis revealed that platelet aggregation, secretory granule lumen, and G-protein-coupled purinergic nucleotide receptor activity were common biological processes, cellular components, and molecular function in HCC and chronic hepatitis B (CHB) compared to healthy controls, respectively. Furthermore, pathway analysis demonstrated that "estrogen response" was involved in the pathogenesis of HCC and CHB conditions, while, "apoptosis" and "coagulation" pathways were specific for HCC. Employing computational feature selection and logistic regression classification, we identified candidate genes pivotal for diagnostic panel development and evaluated the performance of these panels. Subsequent machine learning evaluations assessed these panels' performance in an independent cohort. Remarkably, a 3-marker panel, comprising RANSE2, TNF-α, and MAP3K7, demonstrated the best performance in qRT-PCR-validated experimental data, achieving 98.4% accuracy and an area under the curve of 1. Our findings highlight this panel's promising potential as a non-invasive approach not only for detecting HCC but also for distinguishing HCC from CHB patients.

摘要

肝细胞癌 (HCC) 是最常见的癌症之一,在全球范围内导致了相当一部分癌症相关死亡。这种疾病病因复杂,常常给诊断带来挑战。因此,寻找一种可靠的非侵入性诊断方法似乎是必要的。在这项研究中,我们分析了 20 名 HCC 患者、12 名慢性乙型肝炎患者和 15 名健康对照者的基因表达谱。富集分析显示,与健康对照组相比,HCC 和慢性乙型肝炎 (CHB) 患者的共同生物学过程、细胞成分和分子功能分别为血小板聚集、分泌颗粒腔和 G 蛋白偶联嘌呤核苷酸受体活性。此外,通路分析表明,“雌激素反应”参与了 HCC 和 CHB 发病机制,而“细胞凋亡”和“凝血”通路则是 HCC 所特有的。我们采用计算特征选择和逻辑回归分类,鉴定了用于诊断面板开发的关键候选基因,并评估了这些面板的性能。随后的机器学习评估在独立队列中评估了这些面板的性能。值得注意的是,一个由 RANSE2、TNF-α 和 MAP3K7 组成的 3 标志物面板在 qRT-PCR 验证的实验数据中表现出最佳性能,准确率达到 98.4%,曲线下面积为 1。我们的研究结果突出了该面板作为一种非侵入性方法的潜在应用价值,不仅可以用于检测 HCC,还可以用于区分 HCC 和 CHB 患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a94f/10980807/b660c0f97af1/41598_2024_58158_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验