Surgailis Jokūbas, Flagg Lucas Q, Richter Lee J, Druet Victor, Griggs Sophie, Wu Xiaocui, Moro Stefania, Ohayon David, Kousseff Christina J, Marks Adam, Maria Iuliana P, Chen Hu, Moser Maximilian, Costantini Giovanni, McCulloch Iain, Inal Sahika
King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Lab, Thuwal, 23955-6900, Saudi Arabia.
National Institute of Standards and Technology (NIST), Materials Science and Engineering Division, Gaithersburg, MD, 20899, USA.
Adv Mater. 2024 Dec;36(51):e2313121. doi: 10.1002/adma.202313121. Epub 2024 Apr 12.
Introducing ethylene glycol (EG) side chains to a conjugated polymer backbone is a well-established synthetic strategy for designing organic mixed ion-electron conductors (OMIECs). However, the impact that film swelling has on mixed conduction properties has yet to be scoped, particularly for electron-transporting (n-type) OMIECs. Here, the authors investigate the effect of the length of branched EG chains on mixed charge transport of n-type OMIECs based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bithiophene backbone. Atomic force microscopy (AFM), grazing-incidence wide-angle X-ray scattering (GIWAXS), and scanning tunneling microscopy (STM) are used to establish the similarities between the common-backbone films in dry conditions. Electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and in situ GIWAXS measurements reveal stark changes in film swelling properties and microstructure during electrochemical doping, depending on the side chain length. It is found that even in the loss of the crystallite content upon contact with the aqueous electrolyte, the films can effectively transport charges and that it is rather the high water content that harms the electronic interconnectivity within the OMIEC films. These results highlight the importance of controlling water uptake in the films to impede charge transport in n-type electrochemical devices.
将乙二醇(EG)侧链引入共轭聚合物主链是设计有机混合离子-电子导体(OMIECs)的一种成熟的合成策略。然而,薄膜溶胀对混合传导性能的影响尚未明确,特别是对于电子传输(n型)OMIECs。在此,作者研究了基于萘-1,4,5,8-四羧酸二酰亚胺-联噻吩主链的支链EG链长度对n型OMIECs混合电荷传输的影响。利用原子力显微镜(AFM)、掠入射广角X射线散射(GIWAXS)和扫描隧道显微镜(STM)来确定干燥条件下共主链薄膜之间的相似性。具有耗散监测功能的电化学石英晶体微天平(EQCM-D)和原位GIWAXS测量表明,在电化学掺杂过程中,薄膜的溶胀性能和微观结构会根据侧链长度发生显著变化。研究发现,即使在与水性电解质接触后微晶含量有所损失,薄膜仍能有效地传输电荷,而正是高含水量损害了OMIEC薄膜内的电子互连性。这些结果突出了控制薄膜中水的吸收以阻碍n型电化学器件中电荷传输的重要性。