Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China.
Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China.
Comput Biol Med. 2024 May;173:108366. doi: 10.1016/j.compbiomed.2024.108366. Epub 2024 Mar 22.
Gender carries important information related to male and female characteristics, and a large number of studies have attempted to use physiological measurement methods for gender classification. Although previous studies have shown that there exist statistical differences in some Electroencephalographic (EEG) microstate parameters between males and females, it is still unknown that whether these microstate parameters can be used as potential biomarkers for gender classification based on machine learning.
We used two independent resting-state EEG datasets: the first dataset included 74 females and matched 74 males, and the second one included 42 males and matched 42 females. EEG microstate analysis based on modified k-means clustering method was applied, and temporal parameter and nonlinear characteristics (sample entropy and Lempel-Ziv complexity) of EEG microstate sequences were extracted to compare between males and females. More importantly, these microstate temporal parameters and complexity were tried to train six machine learning methods for gender classification.
We obtained five common microstates for each dataset and each group. Compared with the male group, the female group has significantly higher temporal parameters of microstate B, C, E and lower temporal parameters of microstate A and D, and higher complexity of microstate sequence. When using combination of microstate temporal parameters and complexity or only microstate temporal parameters as classification features in an independent test set (the second dataset), we achieved 95.2% classification accuracy.
Our research findings indicate that the dynamics of microstate have considerable Gender-specific alteration. EEG microstates can be used as neurophysiological biomarkers for gender classification.
性别携带与男性和女性特征相关的重要信息,大量研究试图使用生理测量方法进行性别分类。尽管先前的研究表明,男性和女性之间存在一些脑电图(EEG)微状态参数的统计差异,但尚不清楚这些微状态参数是否可以基于机器学习用作性别分类的潜在生物标志物。
我们使用了两个独立的静息态 EEG 数据集:第一个数据集包括 74 名女性和匹配的 74 名男性,第二个数据集包括 42 名男性和匹配的 42 名女性。应用基于改进的 k-均值聚类方法的 EEG 微状态分析,并提取 EEG 微状态序列的时间参数和非线性特征(样本熵和 Lempel-Ziv 复杂度),以比较男性和女性之间的差异。更重要的是,尝试使用这些微状态时间参数和复杂度来训练六种用于性别分类的机器学习方法。
我们获得了每个数据集和每个组的五个常见微状态。与男性组相比,女性组的微状态 B、C、E 的时间参数显著更高,微状态 A 和 D 的时间参数显著更低,微状态序列的复杂度更高。当在独立测试集(第二个数据集)中使用微状态时间参数和复杂度的组合或仅使用微状态时间参数作为分类特征时,我们达到了 95.2%的分类准确率。
我们的研究结果表明,微状态的动力学具有相当大的性别特异性改变。EEG 微状态可用作性别分类的神经生理标志物。