Suppr超能文献

脑电微状态序列的复杂度测度:概念与算法。

Complexity Measures for EEG Microstate Sequences: Concepts and Algorithms.

机构信息

School of Biomedical Sciences, University of New South Wales (UNSW), Wallace Wurth, Kensington, NSW, 2052, Australia.

Department of Neurology and Clinical Neurophysiology, Lüneburg Hospital, Bögelstrasse 1, 21339, Lüneburg, Germany.

出版信息

Brain Topogr. 2024 Mar;37(2):296-311. doi: 10.1007/s10548-023-01006-2. Epub 2023 Sep 26.

Abstract

EEG microstate sequence analysis quantifies properties of ongoing brain electrical activity which is known to exhibit complex dynamics across many time scales. In this report we review recent developments in quantifying microstate sequence complexity, we classify these approaches with regard to different complexity concepts, and we evaluate excess entropy as a yet unexplored quantity in microstate research. We determined the quantities entropy rate, excess entropy, Lempel-Ziv complexity (LZC), and Hurst exponents on Potts model data, a discrete statistical mechanics model with a temperature-controlled phase transition. We then applied the same techniques to EEG microstate sequences from wakefulness and non-REM sleep stages and used first-order Markov surrogate data to determine which time scales contributed to the different complexity measures. We demonstrate that entropy rate and LZC measure the Kolmogorov complexity (randomness) of microstate sequences, whereas excess entropy and Hurst exponents describe statistical complexity which attains its maximum at intermediate levels of randomness. We confirmed the equivalence of entropy rate and LZC when the LZ-76 algorithm is used, a result previously reported for neural spike train analysis (Amigó et al., Neural Comput 16:717-736, https://doi.org/10.1162/089976604322860677 , 2004). Surrogate data analyses prove that entropy-based quantities and LZC focus on short-range temporal correlations, whereas Hurst exponents include short and long time scales. Sleep data analysis reveals that deeper sleep stages are accompanied by a decrease in Kolmogorov complexity and an increase in statistical complexity. Microstate jump sequences, where duplicate states have been removed, show higher randomness, lower statistical complexity, and no long-range correlations. Regarding the practical use of these methods, we suggest that LZC can be used as an efficient entropy rate estimator that avoids the estimation of joint entropies, whereas entropy rate estimation via joint entropies has the advantage of providing excess entropy as the second parameter of the same linear fit. We conclude that metrics of statistical complexity are a useful addition to microstate analysis and address a complexity concept that is not yet covered by existing microstate algorithms while being actively explored in other areas of brain research.

摘要

脑电微状态序列分析量化了脑电活动的特性,这些特性在许多时间尺度上表现出复杂的动力学。在本报告中,我们回顾了量化微状态序列复杂性的最新进展,根据不同的复杂性概念对这些方法进行了分类,并评估了过剩熵作为微状态研究中尚未探索的数量。我们确定了熵率、过剩熵、Lempel-Ziv 复杂度 (LZC) 和 Hurst 指数在 Potts 模型数据上的数量,Potts 模型数据是一个具有温度控制相变的离散统计力学模型。然后,我们将相同的技术应用于清醒和非快速眼动睡眠阶段的 EEG 微状态序列,并使用一阶马尔可夫替代数据来确定哪些时间尺度对不同的复杂性度量有贡献。我们证明熵率和 LZC 测量微状态序列的柯尔莫哥洛夫复杂度(随机性),而过剩熵和赫斯特指数描述的是在中等随机性水平下达到最大值的统计复杂性。我们证实了当使用 LZ-76 算法时,熵率和 LZC 是等价的,这一结果先前已在神经尖峰序列分析中报告过(Amigó 等人,《神经计算》16:717-736,https://doi.org/10.1162/089976604322860677 ,2004)。替代数据分析证明,基于熵的量和 LZC 集中于短程时间相关性,而赫斯特指数包括短程和长程时间尺度。睡眠数据分析表明,更深的睡眠阶段伴随着柯尔莫哥洛夫复杂度的降低和统计复杂性的增加。微状态跳跃序列,其中已去除重复状态,显示出更高的随机性、更低的统计复杂性和没有长程相关性。关于这些方法的实际应用,我们建议 LZC 可用作有效熵率估计器,避免联合熵的估计,而通过联合熵进行熵率估计具有提供过剩熵作为同一线性拟合的第二个参数的优势。我们得出结论,统计复杂性的度量是微状态分析的有用补充,并解决了现有微状态算法尚未涵盖的复杂性概念,同时在大脑研究的其他领域也在积极探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a4/10884068/1c37564a8915/10548_2023_1006_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验