Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States.
Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States.
Acta Biomater. 2024 Apr 15;179:234-242. doi: 10.1016/j.actbio.2024.03.018. Epub 2024 Mar 28.
Native and biomimetic DNA structures have been demonstrated to impact materials synthesis under a variety of conditions but have only just begun to be explored in this role compared to other biopolymers such as peptides, proteins, polysaccharides, and glycopolymers. One selected DNA aptamer has been explored in calcium phosphate and calcium carbonate mineralization, demonstrating sequence-dependent control of kinetics, morphology, and crystallinity. This aptamer is here applied to a biologically-relevant bone model system that uses collagen hydrogels. In the presence of the aptamer, intrafibrillar collagen mineralization is observed compared to negative controls and a positive control using well-studied poly-aspartic acid. The mechanism of interaction is explored through affinity measurements, kinetics of calcium uptake, and kinetics of aptamer uptake into the forming mineral. There is a marked difference observed between the selected aptamer containing a G-quadruplex secondary structure compared to a control sequence with no G-quadruplex. It is hypothesized that the equilibrium interaction of the aptamer with calcium-phosphate precursors and with the collagen itself leads to slow kinetic mineral formation and a morphology appropriate to bone. This points to new uses for DNA aptamers in biologically-relevant mineralization systems and the possibility of future biomedical applications. STATEMENT OF SIGNIFICANCE: Collagen is the protein structural component that mineralizes with calcium phosphate to form durable bone. Crystalline calcium phosphate must be infused throughout the collagen fiber structure to produce a strong material. This process is assisted by soluble proteins that interact with both calcium phosphate precursors and the collagen protein and has been proposed to follow a polymer-induce liquid precursor (PILP) model. Further understanding of this model and control of the process through synthetic, biomimetic molecules could have significant advantages in biomedical, restorative procedures. For the first time, synthetic DNA aptamers with specific secondary structures are here shown to influence and direct collagen mineralization. The mechanism of this process has been studied to demonstrate an important equilibrium between the DNA aptamer, calcium phosphate precursors, and collagen.
天然和仿生 DNA 结构已被证明可在多种条件下影响材料的合成,但与其他生物聚合物(如肽、蛋白质、多糖和糖聚合物)相比,它们在这一角色中的探索才刚刚开始。一种选定的 DNA 适体已在磷酸钙和碳酸钙矿化中进行了探索,证明了序列依赖性控制动力学、形态和结晶度。该适体现应用于使用胶原蛋白水凝胶的生物相关骨模型系统中。在适体存在的情况下,与阴性对照和使用经过充分研究的聚天冬氨酸的阳性对照相比,观察到纤维内胶原蛋白矿化。通过亲和力测量、钙摄取动力学和适体摄取进入形成的矿物质的动力学来探索相互作用的机制。与没有 G-四链体的对照序列相比,观察到含有 G-四链体二级结构的选定适体之间存在明显差异。据推测,适体与钙-磷前体和胶原蛋白本身的平衡相互作用导致动力学缓慢的矿物形成和适合骨骼的形态。这指向了 DNA 适体在生物相关矿化系统中的新用途和未来生物医学应用的可能性。
意义陈述:胶原蛋白是与磷酸钙矿化形成耐用骨骼的蛋白质结构成分。必须将结晶磷酸钙注入胶原蛋白纤维结构中,以产生坚固的材料。这一过程由与钙磷前体和胶原蛋白蛋白相互作用的可溶性蛋白辅助,并已提出遵循聚合物诱导的液体前体(PILP)模型。通过合成、仿生分子进一步了解该模型和控制该过程,在生物医学、修复程序中可能具有显著优势。
首次显示具有特定二级结构的合成 DNA 适体可影响和指导胶原蛋白矿化。已经研究了该过程的机制,以证明 DNA 适体、钙磷前体和胶原蛋白之间的重要平衡。
ACS Appl Mater Interfaces. 2023-2-8
ACS Biomater Sci Eng. 2019-7-8
Biochim Biophys Acta Gen Subj. 2018-10-10
Acta Biomater. 2021-1-15
Anal Chim Acta. 2020-3-17
ACS Appl Mater Interfaces. 2021-8-25
Fundam Res. 2025-1-2
Int J Mol Sci. 2024-6-2