文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生物矿化的再生医学复合材料

Biomineral-Based Composite Materials in Regenerative Medicine.

机构信息

Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea.

Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea.

出版信息

Int J Mol Sci. 2024 Jun 2;25(11):6147. doi: 10.3390/ijms25116147.


DOI:10.3390/ijms25116147
PMID:38892335
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11173312/
Abstract

Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.

摘要

再生医学旨在通过增强身体的自然再生能力和保护组织和器官的健康来解决重大缺陷。为了实现这些目标,需要能够为细胞增殖和分化提供空间和生物学支持的材料,以及为预期组织提供必要的微环境的材料。聚合物和金属材料等支架为细胞提供了附着和在缺陷中生长的三维结构。这些材料在机械性能或生物相容性方面存在局限性。相比之下,生物矿化是由生物体通过生物矿化形成的,其中还包括通过复制该过程形成的矿物质。将生物矿化材料纳入传统材料中,可以提高强度、耐久性和生物相容性。具体来说,生物矿化材料可以通过模拟微环境来改善植入物和组织之间的结合。这可以促进细胞分化和组织再生。此外,生物矿化复合材料具有促进伤口愈合和抗菌的特性,有助于伤口修复。此外,生物矿化材料可以被设计为药物载体,能够将药物高效地输送到目标部位,最小化副作用并提高治疗效果。本文探讨了生物矿化材料及其复合材料在再生医学应用中的作用,并讨论了它们的性质、合成方法和潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/d7e22c2dd8a3/ijms-25-06147-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/5f69edd5d4b4/ijms-25-06147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/460a9f742ea8/ijms-25-06147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/aac2a5de1de3/ijms-25-06147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/4dae3a3da4f7/ijms-25-06147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/ead331bc0780/ijms-25-06147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/52724fc3dd62/ijms-25-06147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/546c49a4f129/ijms-25-06147-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/a699b2817539/ijms-25-06147-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/d7e22c2dd8a3/ijms-25-06147-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/5f69edd5d4b4/ijms-25-06147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/460a9f742ea8/ijms-25-06147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/aac2a5de1de3/ijms-25-06147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/4dae3a3da4f7/ijms-25-06147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/ead331bc0780/ijms-25-06147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/52724fc3dd62/ijms-25-06147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/546c49a4f129/ijms-25-06147-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/a699b2817539/ijms-25-06147-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e22/11173312/d7e22c2dd8a3/ijms-25-06147-g009.jpg

相似文献

[1]
Biomineral-Based Composite Materials in Regenerative Medicine.

Int J Mol Sci. 2024-6-2

[2]
Application of metal-organic framework materials in regenerative medicine.

J Mater Chem B. 2024-9-11

[3]
Recent insights on applications of pullulan in tissue engineering.

Carbohydr Polym. 2016-8-1

[4]
Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine.

J Biomed Mater Res A. 2014-5

[5]
Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review.

Molecules. 2021-1-25

[6]
A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds.

Int J Biol Macromol. 2023-7-1

[7]
Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.

J Mater Sci Mater Med. 2020-8-20

[8]
Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

Ann Biomed Eng. 2014-7

[9]
Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine.

Stem Cell Rev Rep. 2016-12

[10]
Supercritical CO foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation.

Acta Biomater. 2019-5-31

引用本文的文献

[1]
Special Issue: "Application of Nanotechnology in Regenerative Medicine".

Int J Mol Sci. 2025-7-2

[2]
Machine Learning in Predicting and Optimizing Polymer Printability for 3D Bioprinting.

Polymers (Basel). 2025-7-4

[3]
Biochar Utilization in Antimicrobial, Anticancer, and Biosensing Applications: A Review.

Biomolecules. 2025-5-25

[4]
Multimodal Synergistic Strategies for Diabetic Wound Healing Using Glucose Oxidase Nanocomposites: Therapeutic Mechanisms and Nanomaterial Design.

Int J Nanomedicine. 2025-5-2

[5]
Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering.

Int J Mol Sci. 2024-12-22

本文引用的文献

[1]
Biominerals and Bioinspired Materials in Biosensing: Recent Advancements and Applications.

Int J Mol Sci. 2024-4-25

[2]
Natural and Synthetic Polymers for Biomedical and Environmental Applications.

Polymers (Basel). 2024-4-20

[3]
Ultrastiff metamaterials generated through a multilayer strategy and topology optimization.

Nat Commun. 2024-4-6

[4]
Equilibrium interactions of biomimetic DNA aptamers produce intrafibrillar calcium phosphate mineralization of collagen.

Acta Biomater. 2024-4-15

[5]
One-photon three-dimensional printed fused silica glass with sub-micron features.

Nat Commun. 2024-3-27

[6]
Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis.

Biomimetics (Basel). 2024-3-13

[7]
Scalable production of structurally colored composite films by shearing supramolecular composites of polymers and colloids.

Nat Commun. 2024-2-29

[8]
Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review.

Int J Mol Sci. 2024-2-7

[9]
Developing natural polymers for skin wound healing.

Bioact Mater. 2023-11-26

[10]
Modification of titanium orthopedic implants with bioactive glass: a systematic review of and studies.

Front Bioeng Biotechnol. 2023-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索